$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Silk Fibroin Enhances Cytocompatibilty and Dimensional Stability of Alginate Hydrogels for Light-Based Three-Dimensional Bioprinting

Biomacromolecules, v.22 no.5, 2021년, pp.1921 - 1931  

Kim, Eunu (Department of Organic Materials Engineering , Chungnam National University , Daejeon 34134 , South Korea) ,  Seok, Ji Min (Department of Nature-Inspired Nanoconvergence Systems , Korea Institute of Machinery and Materials , Daejeon 34103 , South Korea) ,  Bae, Su Bin (Department of Organic Materials Engineering , Chungnam National University , Daejeon 34134 , South Korea) ,  Park, Su A ,  Park, Won Ho

Abstract AI-Helper 아이콘AI-Helper

Three-dimensional (3D) bioprinting is a technology under active study for use in tissue engineering and regenerative medicine. Bioink comprises cells and polymers and is the essential material for 3D bioprinting. The characteristics of the bioink affect its printability, gelation behavior, and cell ...

참고문헌 (37)

  1. Zhao, HaiMing, Yang, FeiFei, Fu, JianZhong, Gao, Qing, Liu, An, Sun, Miao, He, Yong. Printing@Clinic: From Medical Models to Organ Implants. ACS biomaterials science & engineering, vol.3, no.12, 3083-3097.

  2. Do, Anh‐Vu, Khorsand, Behnoush, Geary, Sean M., Salem, Aliasger K.. 3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced healthcare materials, vol.4, no.12, 1742-1762.

  3. Li, Huijun, Tan, Cavin, Li, Lin. Review of 3D printable hydrogels and constructs. Materials & Design, vol.159, 20-38.

  4. Gungor-Ozkerim, P. Selcan, Inci, Ilyas, Zhang, Yu Shrike, Khademhosseini, Ali, Dokmeci, Mehmet Remzi. Bioinks for 3D bioprinting: an overview. Biomaterials science, vol.6, no.5, 915-946.

  5. Rastogi, Prasansha, Kandasubramanian, Balasubramanian. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, vol.11, no.4, 042001-.

  6. Liu, Wanjun, Zhong, Zhe, Hu, Ning, Zhou, Yixiao, Maggio, Lucia, Miri, Amir K, Fragasso, Alessio, Jin, Xiangyu, Khademhosseini, Ali, Zhang, Yu Shrike. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, vol.10, no.2, 024102-.

  7. Colosi, Cristina, Shin, Su Ryon, Manoharan, Vijayan, Massa, Solange, Costantini, Marco, Barbetta, Andrea, Dokmeci, Mehmet Remzi, Dentini, Mariella, Khademhosseini, Ali. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low‐Viscosity Bioink. Advanced materials, vol.28, no.4, 677-684.

  8. Zhu, Kai, Chen, Nan, Liu, Xiao, Mu, Xuan, Zhang, Weijia, Wang, Chunsheng, Zhang, Yu Shrike. A General Strategy for Extrusion Bioprinting of Bio‐Macromolecular Bioinks through Alginate‐Templated Dual‐Stage Crosslinking. Macromolecular bioscience, vol.18, no.9, 1800127-.

  9. Abasalizadeh, Farhad, Moghaddam, Sevil Vaghefi, Alizadeh, Effat, akbari, Elahe, Kashani, Elmira, Fazljou, Seyyed Mohammad Bagher, Torbati, Mohammadali, Akbarzadeh, Abolfazl. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of biological engineering, vol.14, no.1, 8-.

  10. Pantani, Roberto, Turng, Lih‐Sheng. Manufacturing of advanced biodegradable polymeric components. Journal of applied polymer science, vol.132, no.48,

  11. Valentin, Thomas M., Landauer, Alexander K., Morales, Luke C., DuBois, Eric M., Shukla, Shashank, Liu, Muchun, Stephens Valentin, Lauren H., Franck, Christian, Chen, Po-Yen, Wong, Ian Y.. Alginate-graphene oxide hydrogels with enhanced ionic tunability and chemomechanical stability for light-directed 3D printing. Carbon, vol.143, 447-456.

  12. Park, Jisun, Lee, Su Jeong, Lee, Hwangjae, Park, Su A, Lee, Jae Young. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering. Carbohydrate polymers, vol.196, 217-224.

  13. Axpe, Eneko, Oyen, Michelle L.. Applications of Alginate-Based Bioinks in 3D Bioprinting. International journal of molecular sciences, vol.17, no.12, 1976-.

  14. Kim, Eunu, Kim, Min Hee, Song, Jae Hwang, Kang, Chan, Park, Won Ho. Dual crosslinked alginate hydrogels by riboflavin as photoinitiator. International journal of biological macromolecules, vol.154, 989-998.

  15. Huang, Wenwen, Ebrahimi, Davoud, Dinjaski, Nina, Tarakanova, Anna, Buehler, Markus J., Wong, Joyce Y., Kaplan, David L.. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials. Accounts of chemical research, vol.50, no.4, 866-876.

  16. Rockwood, Danielle N, Preda, Rucsanda C, Y체cel, Tuna, Wang, Xiaoqin, Lovett, Michael L, Kaplan, David L. Materials fabrication from Bombyx mori silk fibroin. Nature protocols, vol.6, no.10, 1612-1631.

  17. Kim, Soon Hee, Yeon, Yeung Kyu, Lee, Jung Min, Chao, Janet Ren, Lee, Young Jin, Seo, Ye Been, Sultan, Md. Tipu, Lee, Ok Joo, Lee, Ji Seung, Yoon, Sung-il, Hong, In-Sun, Khang, Gilson, Lee, Sang Jin, Yoo, James J., Park, Chan Hum. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature communications, vol.9, no.1, 1620-.

  18. Reis, Adriano V., Fajardo, André R., Schuquel, Ivania T. A., Guilherme, Marcos R., Vidotti, Gentil José, Rubira, Adley F., Muniz, Edvani C.. Reaction of Glycidyl Methacrylate at the Hydroxyl and Carboxylic Groups of Poly(vinyl alcohol) and Poly(acrylic acid): Is This Reaction Mechanism Still Unclear?. Journal of organic chemistry, vol.74, no.10, 3750-3757.

  19. Pereira, Rúben F., Sousa, Aureliana, Barrias, Cristina C., Bártolo, Paulo J., Granja, Pedro L.. A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Materials horizons, vol.5, no.6, 1100-1111.

  20. Paxton, Naomi, Smolan, Willi, Böck, Thomas, Melchels, Ferry, Groll, Jürgen, Jungst, Tomasz. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication, vol.9, no.4, 044107-.

  21. Ouyang, Liliang, Yao, Rui, Zhao, Yu, Sun, Wei. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, vol.8, no.3, 035020-.

  22. Li, Huijun, Tan, Yu Jun, Leong, Kah Fai, Li, Lin. 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS applied materials & interfaces, vol.9, no.23, 20086-20097.

  23. Sakai, Shinji, Kamei, Hidenori, Mori, Toko, Hotta, Tomoki, Ohi, Hiromi, Nakahata, Masaki, Taya, Masahito. Visible Light-Induced Hydrogelation of an Alginate Derivative and Application to Stereolithographic Bioprinting Using a Visible Light Projector and Acid Red. Biomacromolecules, vol.19, no.2, 672-679.

  24. Bae, Su Bin, Kim, Min Hee, Park, Won Ho. Electrospinning and dual crosslinking of water-soluble silk fibroin modified with glycidyl methacrylate. Polymer degradation and stability, vol.179, 109304-.

  25. Qi, Yu, Wang, Hui, Wei, Kai, Yang, Ya, Zheng, Ru-Yue, Kim, Ick Soo, Zhang, Ke-Qin. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. International journal of molecular sciences, vol.18, no.3, 237-.

  26. Zheng, Ao, Cao, Lingyan, Liu, Yang, Wu, Jiannan, Zeng, Deliang, Hu, Longwei, Zhang, Xiangkai, Jiang, Xinquan. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydrate polymers, vol.199, 244-255.

  27. Shin, Ji Youn, Yeo, Yong Ho, Jeong, Jae Eun, Park, Su A., Park, Won Ho. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Carbohydrate polymers, vol.238, 116192-.

  28. Kim, Chang Sup, Yang, Yun Jung, Bahn, So Yeong, Cha, Hyung Joon. A bioinspired dual-crosslinked tough silk protein hydrogel as a protective biocatalytic matrix for carbon sequestration. NPG Asia Materials, vol.9, e391-e391.

  29. Xiao, Daijun, He, Minghong, Liu, Yulan, Xiong, Lijun, Zhang, Qiao, Wei, Lai, Li, Liang, Yu, Xianghua. Strong alginate/reduced graphene oxide composite hydrogels with enhanced dye adsorption performance. Polymer bulletin, vol.77, no.12, 6609-6623.

  30. Hu, Xiao, Shmelev, Karen, Sun, Lin, Gil, Eun-Seok, Park, Sang-Hyug, Cebe, Peggy, Kaplan, David L.. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing. Biomacromolecules, vol.12, no.5, 1686-1696.

  31. Gao, Teng, Gillispie, Gregory J, Copus, Joshua S, PR, Anil Kumar, Seol, Young-Joon, Atala, Anthony, Yoo, James J, Lee, Sang Jin. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication, vol.10, no.3, 034106-.

  32. Petta, Dalila, Grijpma, Dirk W., Alini, Mauro, Eglin, David, D’Este, Matteo. Three-Dimensional Printing of a Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of Shear Thinning and Postprinting Curing. ACS biomaterials science & engineering, vol.4, no.8, 3088-3098.

  33. Lim, Khoon S., Schon, Benjamin S., Mekhileri, Naveen V., Brown, Gabriella C. J., Chia, Catherine M., Prabakar, Sujay, Hooper, Gary J., Woodfield, Tim B. F.. New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks. ACS biomaterials science & engineering, vol.2, no.10, 1752-1762.

  34. Wang, Yiyu, Wang, Xinyu, Shi, Jian, Zhu, Rong, Zhang, Junhua, Zhang, Zongrui, Ma, Daiwei, Hou, Yuanjing, Lin, Fei, Yang, Jing, Mizuno, Mamoru. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Scientific reports, vol.6, 39477-.

  35. Chimene, David, Peak, Charles W., Gentry, James L., Carrow, James K., Cross, Lauren M., Mondragon, Eli, Cardoso, Guinea B., Kaunas, Roland, Gaharwar, Akhilesh K.. Nanoengineered Ionic-Covalent Entanglement (NICE) Bioinks for 3D Bioprinting. ACS applied materials & interfaces, vol.10, no.12, 9957-9968.

  36. Zhai, Xinyun, Ruan, Changshun, Ma, Yufei, Cheng, Delin, Wu, Mingming, Liu, Wenguang, Zhao, Xiaoli, Pan, Haobo, Lu, William Weijia. 3D‐Bioprinted Osteoblast‐Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo. Advanced science, vol.5, no.3, 1700550-.

  37. Hu, X., Kaplan, D., Cebe, P.. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules, vol.39, no.18, 6161-6170.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로