최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Biomacromolecules, v.22 no.5, 2021년, pp.1921 - 1931
Kim, Eunu (Department of Organic Materials Engineering , Chungnam National University , Daejeon 34134 , South Korea) , Seok, Ji Min (Department of Nature-Inspired Nanoconvergence Systems , Korea Institute of Machinery and Materials , Daejeon 34103 , South Korea) , Bae, Su Bin (Department of Organic Materials Engineering , Chungnam National University , Daejeon 34134 , South Korea) , Park, Su A , Park, Won Ho
Three-dimensional (3D) bioprinting is a technology under active study for use in tissue engineering and regenerative medicine. Bioink comprises cells and polymers and is the essential material for 3D bioprinting. The characteristics of the bioink affect its printability, gelation behavior, and cell ...
Zhao, HaiMing, Yang, FeiFei, Fu, JianZhong, Gao, Qing, Liu, An, Sun, Miao, He, Yong. Printing@Clinic: From Medical Models to Organ Implants. ACS biomaterials science & engineering, vol.3, no.12, 3083-3097.
Do, Anh‐Vu, Khorsand, Behnoush, Geary, Sean M., Salem, Aliasger K.. 3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced healthcare materials, vol.4, no.12, 1742-1762.
Li, Huijun, Tan, Cavin, Li, Lin. Review of 3D printable hydrogels and constructs. Materials & Design, vol.159, 20-38.
Gungor-Ozkerim, P. Selcan, Inci, Ilyas, Zhang, Yu Shrike, Khademhosseini, Ali, Dokmeci, Mehmet Remzi. Bioinks for 3D bioprinting: an overview. Biomaterials science, vol.6, no.5, 915-946.
Rastogi, Prasansha, Kandasubramanian, Balasubramanian. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, vol.11, no.4, 042001-.
Liu, Wanjun, Zhong, Zhe, Hu, Ning, Zhou, Yixiao, Maggio, Lucia, Miri, Amir K, Fragasso, Alessio, Jin, Xiangyu, Khademhosseini, Ali, Zhang, Yu Shrike. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Biofabrication, vol.10, no.2, 024102-.
Colosi, Cristina, Shin, Su Ryon, Manoharan, Vijayan, Massa, Solange, Costantini, Marco, Barbetta, Andrea, Dokmeci, Mehmet Remzi, Dentini, Mariella, Khademhosseini, Ali. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs Using Low‐Viscosity Bioink. Advanced materials, vol.28, no.4, 677-684.
Zhu, Kai, Chen, Nan, Liu, Xiao, Mu, Xuan, Zhang, Weijia, Wang, Chunsheng, Zhang, Yu Shrike. A General Strategy for Extrusion Bioprinting of Bio‐Macromolecular Bioinks through Alginate‐Templated Dual‐Stage Crosslinking. Macromolecular bioscience, vol.18, no.9, 1800127-.
Abasalizadeh, Farhad, Moghaddam, Sevil Vaghefi, Alizadeh, Effat, akbari, Elahe, Kashani, Elmira, Fazljou, Seyyed Mohammad Bagher, Torbati, Mohammadali, Akbarzadeh, Abolfazl. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. Journal of biological engineering, vol.14, no.1, 8-.
Pantani, Roberto, Turng, Lih‐Sheng. Manufacturing of advanced biodegradable polymeric components. Journal of applied polymer science, vol.132, no.48,
Valentin, Thomas M., Landauer, Alexander K., Morales, Luke C., DuBois, Eric M., Shukla, Shashank, Liu, Muchun, Stephens Valentin, Lauren H., Franck, Christian, Chen, Po-Yen, Wong, Ian Y.. Alginate-graphene oxide hydrogels with enhanced ionic tunability and chemomechanical stability for light-directed 3D printing. Carbon, vol.143, 447-456.
Park, Jisun, Lee, Su Jeong, Lee, Hwangjae, Park, Su A, Lee, Jae Young. Three dimensional cell printing with sulfated alginate for improved bone morphogenetic protein-2 delivery and osteogenesis in bone tissue engineering. Carbohydrate polymers, vol.196, 217-224.
Axpe, Eneko, Oyen, Michelle L.. Applications of Alginate-Based Bioinks in 3D Bioprinting. International journal of molecular sciences, vol.17, no.12, 1976-.
Kim, Eunu, Kim, Min Hee, Song, Jae Hwang, Kang, Chan, Park, Won Ho. Dual crosslinked alginate hydrogels by riboflavin as photoinitiator. International journal of biological macromolecules, vol.154, 989-998.
Huang, Wenwen, Ebrahimi, Davoud, Dinjaski, Nina, Tarakanova, Anna, Buehler, Markus J., Wong, Joyce Y., Kaplan, David L.. Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials. Accounts of chemical research, vol.50, no.4, 866-876.
Rockwood, Danielle N, Preda, Rucsanda C, Y체cel, Tuna, Wang, Xiaoqin, Lovett, Michael L, Kaplan, David L. Materials fabrication from Bombyx mori silk fibroin. Nature protocols, vol.6, no.10, 1612-1631.
Kim, Soon Hee, Yeon, Yeung Kyu, Lee, Jung Min, Chao, Janet Ren, Lee, Young Jin, Seo, Ye Been, Sultan, Md. Tipu, Lee, Ok Joo, Lee, Ji Seung, Yoon, Sung-il, Hong, In-Sun, Khang, Gilson, Lee, Sang Jin, Yoo, James J., Park, Chan Hum. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature communications, vol.9, no.1, 1620-.
Reis, Adriano V., Fajardo, André R., Schuquel, Ivania T. A., Guilherme, Marcos R., Vidotti, Gentil José, Rubira, Adley F., Muniz, Edvani C.. Reaction of Glycidyl Methacrylate at the Hydroxyl and Carboxylic Groups of Poly(vinyl alcohol) and Poly(acrylic acid): Is This Reaction Mechanism Still Unclear?. Journal of organic chemistry, vol.74, no.10, 3750-3757.
Pereira, Rúben F., Sousa, Aureliana, Barrias, Cristina C., Bártolo, Paulo J., Granja, Pedro L.. A single-component hydrogel bioink for bioprinting of bioengineered 3D constructs for dermal tissue engineering. Materials horizons, vol.5, no.6, 1100-1111.
Paxton, Naomi, Smolan, Willi, Böck, Thomas, Melchels, Ferry, Groll, Jürgen, Jungst, Tomasz. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication, vol.9, no.4, 044107-.
Ouyang, Liliang, Yao, Rui, Zhao, Yu, Sun, Wei. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, vol.8, no.3, 035020-.
Li, Huijun, Tan, Yu Jun, Leong, Kah Fai, Li, Lin. 3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel with Strong Interface Bonding. ACS applied materials & interfaces, vol.9, no.23, 20086-20097.
Sakai, Shinji, Kamei, Hidenori, Mori, Toko, Hotta, Tomoki, Ohi, Hiromi, Nakahata, Masaki, Taya, Masahito. Visible Light-Induced Hydrogelation of an Alginate Derivative and Application to Stereolithographic Bioprinting Using a Visible Light Projector and Acid Red. Biomacromolecules, vol.19, no.2, 672-679.
Bae, Su Bin, Kim, Min Hee, Park, Won Ho. Electrospinning and dual crosslinking of water-soluble silk fibroin modified with glycidyl methacrylate. Polymer degradation and stability, vol.179, 109304-.
Qi, Yu, Wang, Hui, Wei, Kai, Yang, Ya, Zheng, Ru-Yue, Kim, Ick Soo, Zhang, Ke-Qin. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. International journal of molecular sciences, vol.18, no.3, 237-.
Zheng, Ao, Cao, Lingyan, Liu, Yang, Wu, Jiannan, Zeng, Deliang, Hu, Longwei, Zhang, Xiangkai, Jiang, Xinquan. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydrate polymers, vol.199, 244-255.
Shin, Ji Youn, Yeo, Yong Ho, Jeong, Jae Eun, Park, Su A., Park, Won Ho. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications. Carbohydrate polymers, vol.238, 116192-.
Kim, Chang Sup, Yang, Yun Jung, Bahn, So Yeong, Cha, Hyung Joon. A bioinspired dual-crosslinked tough silk protein hydrogel as a protective biocatalytic matrix for carbon sequestration. NPG Asia Materials, vol.9, e391-e391.
Xiao, Daijun, He, Minghong, Liu, Yulan, Xiong, Lijun, Zhang, Qiao, Wei, Lai, Li, Liang, Yu, Xianghua. Strong alginate/reduced graphene oxide composite hydrogels with enhanced dye adsorption performance. Polymer bulletin, vol.77, no.12, 6609-6623.
Hu, Xiao, Shmelev, Karen, Sun, Lin, Gil, Eun-Seok, Park, Sang-Hyug, Cebe, Peggy, Kaplan, David L.. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing. Biomacromolecules, vol.12, no.5, 1686-1696.
Gao, Teng, Gillispie, Gregory J, Copus, Joshua S, PR, Anil Kumar, Seol, Young-Joon, Atala, Anthony, Yoo, James J, Lee, Sang Jin. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach. Biofabrication, vol.10, no.3, 034106-.
Petta, Dalila, Grijpma, Dirk W., Alini, Mauro, Eglin, David, D’Este, Matteo. Three-Dimensional Printing of a Tyramine Hyaluronan Derivative with Double Gelation Mechanism for Independent Tuning of Shear Thinning and Postprinting Curing. ACS biomaterials science & engineering, vol.4, no.8, 3088-3098.
Lim, Khoon S., Schon, Benjamin S., Mekhileri, Naveen V., Brown, Gabriella C. J., Chia, Catherine M., Prabakar, Sujay, Hooper, Gary J., Woodfield, Tim B. F.. New Visible-Light Photoinitiating System for Improved Print Fidelity in Gelatin-Based Bioinks. ACS biomaterials science & engineering, vol.2, no.10, 1752-1762.
Wang, Yiyu, Wang, Xinyu, Shi, Jian, Zhu, Rong, Zhang, Junhua, Zhang, Zongrui, Ma, Daiwei, Hou, Yuanjing, Lin, Fei, Yang, Jing, Mizuno, Mamoru. A Biomimetic Silk Fibroin/Sodium Alginate Composite Scaffold for Soft Tissue Engineering. Scientific reports, vol.6, 39477-.
Chimene, David, Peak, Charles W., Gentry, James L., Carrow, James K., Cross, Lauren M., Mondragon, Eli, Cardoso, Guinea B., Kaunas, Roland, Gaharwar, Akhilesh K.. Nanoengineered Ionic-Covalent Entanglement (NICE) Bioinks for 3D Bioprinting. ACS applied materials & interfaces, vol.10, no.12, 9957-9968.
Zhai, Xinyun, Ruan, Changshun, Ma, Yufei, Cheng, Delin, Wu, Mingming, Liu, Wenguang, Zhao, Xiaoli, Pan, Haobo, Lu, William Weijia. 3D‐Bioprinted Osteoblast‐Laden Nanocomposite Hydrogel Constructs with Induced Microenvironments Promote Cell Viability, Differentiation, and Osteogenesis both In Vitro and In Vivo. Advanced science, vol.5, no.3, 1700550-.
Hu, X., Kaplan, D., Cebe, P.. Determining Beta-Sheet Crystallinity in Fibrous Proteins by Thermal Analysis and Infrared Spectroscopy. Macromolecules, vol.39, no.18, 6161-6170.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.