$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] High-Level Production of the Natural Blue Pigment Indigoidine from Metabolically Engineered Corynebacterium glutamicum for Sustainable Fabric Dyes

ACS sustainable chemistry et engineering, v.9 no.19, 2021년, pp.6613 - 6622  

Ghiffary, Mohammad Rifqi (Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Prabowo, Cindy Pricilia Surya (Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory , KAIST , Daejeon 34141 , Republic of Korea) ,  Sharma, Komal (Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) ,  Yan, Yuchun (Color Laboratory, Department of Industrial Design , KAIST , Daejeon 34141 , Republic of Korea) ,  Lee, Sang Yup ,  Kim, Hyun Uk

Abstract AI-Helper 아이콘AI-Helper

The textile industry has caused severe water pollution by using many toxic chemicals for producing fabric dyes. In response to this problem, indigoidine has attracted attention as an alternative natural blue dye, but it is necessary to achieve a high-level production to compete with synthetic blue d...

Keyword

참고문헌 (57)

  1. McDonald, Seonaidh, Oates, Caroline J.. Sustainability: Consumer Perceptions and Marketing Strategies. Business strategy and the environment : BSE, vol.15, no.3, 157-170.

  2. 10.1016/B978-0-08-102043-2.00002-2 

  3. Luongo, Giovanna, Thorsén, Gunnar, Östman, Conny. Quinolines in clothing textiles-a source of human exposure and wastewater pollution?. Analytical and bioanalytical chemistry, vol.406, no.12, 2747-2756.

  4. Hsu, Tammy M, Welner, Ditte H, Russ, Zachary N, Cervantes, Bernardo, Prathuri, Ramya L, Adams, Paul D, Dueber, John E. Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nature chemical biology, vol.14, no.3, 256-261.

  5. Yang, Dongsoo, Park, Seon Young, Park, Yae Seul, Eun, Hyunmin, Lee, Sang Yup. Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis. Trends in biotechnology, vol.38, no.7, 745-765.

  6. Takahashi, Hitoshi, Kumagai, Takanori, Kitani, Kyoko, Mori, Miwako, Matoba, Yasuyuki, Sugiyama, Masanori. Cloning and Characterization of a Streptomyces Single Module Type Non-ribosomal Peptide Synthetase Catalyzing a Blue Pigment Synthesis. The Journal of biological chemistry, vol.282, no.12, 9073-9081.

  7. Murdock, Douglas, Ensley, Burt D., Serdar, Cuneyt, Thalen, Marcel. Construction of Metabolic Operons Catalyzing the De Novo Biosynthesis of Indigo in Escherichia coli. Bio/technology, vol.11, no.3, 381-386.

  8. Lee, Jeongchan, Kim, Joonwon, Song, Ji Eun, Song, Won-Suk, Kim, Eun-Jung, Kim, Yun-Gon, Jeong, Hee-Jin, Kim, Hye Rim, Choi, Kwon-Young, Kim, Byung-Gee. Production of Tyrian purple indigoid dye from tryptophan in Escherichia coli. Nature chemical biology, vol.17, no.1, 104-112.

  9. Chu, Mu-Kuei, Lin, Lee-Fong, Twu, Chung-Shing, Lin, Rong-Hwa, Lin, Yuan-Chuen, Hsu, Shih-Tien, Tzeng, Kuo-Ching, Huang, Hsiou-Chen. Unique features of Erwinia chrysanthemi (Dickeya dadantii) RA3B genes involved in the blue indigoidine production. Microbiological research, vol.165, no.6, 483-495.

  10. Novakova, R., Odnogova, Z., Kutas, P., Feckova, L., Kormanec, J.. Identification and characterization of an indigoidine-like gene for a blue pigment biosynthesis in Streptomyces aureofaciens CCM 3239. Folia microbiologica, vol.55, no.2, 119-125.

  11. Brachmann, A.O., Kirchner, F., Kegler, C., Kinski, S.C., Schmitt, I., Bode, H.B.. Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens. Journal of biotechnology, vol.157, no.1, 96-99.

  12. Gromek, Samantha M., Suria, Andrea M., Fullmer, Matthew S., Garcia, Jillian L., Gogarten, Johann Peter, Nyholm, Spencer V., Balunas, Marcy J.. Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios. Frontiers in microbiology, vol.7, 1342-.

  13. Xu, Fuchao, Gage, David, Zhan, Jixun. Efficient production of indigoidine in Escherichia coli. Journal of industrial microbiology & biotechnology, vol.42, no.8, 1149-1155.

  14. Wehrs, Maren, Prahl, Jan-Philip, Moon, Jadie, Li, Yuchen, Tanjore, Deepti, Keasling, Jay D., Pray, Todd, Mukhopadhyay, Aindrila. Production efficiency of the bacterial non-ribosomal peptide indigoidine relies on the respiratory metabolic state in S. cerevisiae. Microbial cell factories, vol.17, 193-.

  15. Wehrs, Maren, Gladden, John M., Liu, Yuzhong, Platz, Lukas, Prahl, Jan-Philip, Moon, Jadie, Papa, Gabriella, Sundstrom, Eric, Geiselman, Gina M., Tanjore, Deepti, Keasling, Jay D., Pray, Todd R., Simmons, Blake A., Mukhopadhyay, Aindrila. Sustainable bioproduction of the blue pigment indigoidine: Expanding the range of heterologous products in R. toruloides to include non-ribosomal peptides. Green chemistry : an international journal and green chemistry resource : GC, vol.21, no.12, 3394-3406.

  16. Banerjee, Deepanwita, Eng, Thomas, Lau, Andrew K., Sasaki, Yusuke, Wang, Brenda, Chen, Yan, Prahl, Jan-Philip, Singan, Vasanth R., Herbert, Robin A., Liu, Yuzhong, Tanjore, Deepti, Petzold, Christopher J., Keasling, Jay D., Mukhopadhyay, Aindrila. Genome-scale metabolic rewiring improves titers rates and yields of the non-native product indigoidine at scale. Nature communications, vol.11, no.1, 5385-.

  17. Marques, Filipe, Luzhetskyy, Andriy, Mendes, Marta V.. Engineering Corynebacterium glutamicum with a comprehensive genomic library and phage-based vectors. Metabolic engineering, vol.62, 221-234.

  18. Becker, Judith, Rohles, Christina Maria, Wittmann, Christoph. Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metabolic engineering, vol.50, 122-141.

  19. Park, Seok Hyun, Kim, Hyun Uk, Kim, Tae Yong, Park, Jun Seok, Kim, Suok-Su, Lee, Sang Yup. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nature communications, vol.5, 4618-.

  20. Cho, Jae Sung, Choi, Kyeong Rok, Prabowo, Cindy Pricilia Surya, Shin, Jae Ho, Yang, Dongsoo, Jang, Jaedong, Lee, Sang Yup. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metabolic engineering, vol.42, 157-167.

  21. Eschbach, S., Hofmann, C., Maerz, M., Maier, U.‐G., Sitte, P.. Molecular Cloning. A Laboratory Manual. 2. Auflage. Hrsg. von J. Sambrook, E. F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press, Cold Spring Harbour 1989, $ 115. ISBN 0‐87969‐309‐6. Biologie in unserer Zeit, vol.20, no.6, 285-285.

  22. Gibson, Daniel G, Young, Lei, Chuang, Ray-Yuan, Venter, J Craig, Hutchison III, Clyde A, Smith, Hamilton O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature methods, vol.6, no.5, 343-345.

  23. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., Puhler, A.. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene, vol.145, no.1, 69-73.

  24. van der Rest, M. E., Lange, C., Molenaar, D.. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Applied microbiology and biotechnology, vol.52, no.4, 541-545.

  25. Zhang, Yu, Cai, Jingyi, Shang, Xiuling, Wang, Bo, Liu, Shuwen, Chai, Xin, Tan, Tianwei, Zhang, Yun, Wen, Tingyi. A new genome-scale metabolic model of Corynebacterium glutamicum and its application. Biotechnology for biofuels, vol.10, 169-.

  26. Ebrahim, Ali, Lerman, Joshua A, Palsson, Bernhard O, Hyduke, Daniel R. COBRApy: COnstraints-Based Reconstruction and Analysis for Python. BMC systems biology, vol.7, 74-74.

  27. Cleto, Sara, Jensen, Jaide VK, Wendisch, Volker F., Lu, Timothy K.. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi). ACS Synthetic biology, vol.5, no.5, 375-385.

  28. Kallscheuer, Nicolai, Kage, Hirokazu, Milke, Lars, Nett, Markus, Marienhagen, Jan. Microbial synthesis of the type I polyketide 6-methylsalicylate with Corynebacterium glutamicum. Applied microbiology and biotechnology, vol.103, no.23, 9619-9631.

  29. Zhou, Xiaoxue, Rodriguez-Rivera, Frances P., Lim, Hoong Chuin, Bell, Jason C., Bernhardt, Thomas G., Bertozzi, Carolyn R., Theriot, Julie A.. Sequential assembly of the septal cell envelope prior to V snapping in Corynebacterium glutamicum. Nature chemical biology, vol.15, no.3, 221-231.

  30. Liu, Qian, Zhang, Jiao, Wei, Xiao-Xing, Ouyang, Shao-Ping, Wu, Qiong, Chen, Guo-Qiang. Microbial production of l-glutamate and l-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb. Applied microbiology and biotechnology, vol.77, no.6, 1297-1304.

  31. Yim, Sung Sun, An, Seul Ji, Kang, Misuk, Lee, Jinho, Jeong, Ki Jun. Isolation of fully synthetic promoters for high‐level gene expression in Corynebacterium glutamicum. Biotechnology and bioengineering, vol.110, no.11, 2959-2969.

  32. Jakoby, Marc, Krämer, Reinhard, Burkovski, Andreas. Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS microbiology letters, vol.173, no.2, 303-310.

  33. Nickel, Jens, Irzik, Kristina, van Ooyen, Jan, Eggeling, Lothar. The TetR-type transcriptional regulator FasR of Corynebacterium glutamicum controls genes of lipid synthesis during growth on acetate. Molecular microbiology, vol.78, no.1, 253-265.

  34. Bott, M.. Offering surprises: TCA cycle regulation in Corynebacterium glutamicum. Trends in microbiology, vol.15, no.9, 417-425.

  35. Niebisch, Axel, Kabus, Armin, Schultz, Christian, Weil, Brita, Bott, Michael. Corynebacterial Protein Kinase G Controls 2-Oxoglutarate Dehydrogenase Activity via the Phosphorylation Status of the OdhI Protein. The Journal of biological chemistry, vol.281, no.18, 12300-12307.

  36. Jorge, João M. P., Nguyen, Anh Q. D., Pérez‐García, Fernando, Kind, Stefanie, Wendisch, Volker F.. Improved fermentative production of gamma‐aminobutyric acid via the putrescine route: Systems metabolic engineering for production from glucose, amino sugars, and xylose. Biotechnology and bioengineering, vol.114, no.4, 862-873.

  37. Kim, Jongpill, Hirasawa, Takashi, Saito, Masaki, Furusawa, Chikara, Shimizu, Hiroshi. Investigation of phosphorylation status of OdhI protein during penicillin- and Tween 40-triggered glutamate overproduction by Corynebacterium glutamicum. Applied microbiology and biotechnology, vol.91, no.1, 143-151.

  38. Kimura, E., Abe, C., Kawahara, Y., Nakamatsu, T., Tokuda, H.. AdtsRGene-Disrupted Mutant ofBrevibacterium lactofermentumRequires Fatty Acids for Growth and Efficiently Produces L-Glutamate in the Presence of an Excess of Biotin. Biochemical and biophysical research communications, vol.234, no.1, 157-161.

  39. Lindner, Steffen N., Seibold, Gerd M., Henrich, Alexander, Krämer, Reinhard, Wendisch, Volker F.. Phosphotransferase System-Independent Glucose Utilization in Corynebacterium glutamicum by Inositol Permeases and Glucokinases. Applied and environmental microbiology, vol.77, no.11, 3571-3581.

  40. Xu, Jian-Zhong, Wu, Ze-Hua, Gao, Shi-Jun, Zhang, Weiguo. Rational modification of tricarboxylic acid cycle for improving L -lysine production in Corynebacterium glutamicum. Microbial cell factories, vol.17, 105-.

  41. Zhang, Xiaomei, Lai, Lianhe, Xu, Guoqiang, Zhang, Xiaojuan, Shi, Jinsong, Koffas, Mattheos A. G., Xu, Zhenghong. Rewiring the Central Metabolic Pathway for High‐Yield L‐Serine Production in Corynebacterium glutamicum by Using Glucose. Biotechnology journal, vol.14, no.6, 1800497-.

  42. Man, Zaiwei, Xu, Meijuan, Rao, Zhiming, Guo, Jing, Yang, Taowei, Zhang, Xian, Xu, Zhenghong. Systems pathway engineering of Corynebacterium crenatum for improved L-arginine production. Scientific reports, vol.6, 28629-.

  43. Brüsseler, Christian, Radek, Andreas, Tenhaef, Niklas, Krumbach, Karin, Noack, Stephan, Marienhagen, Jan. The myo-inositol/proton symporter IolT1 contributes to D-xylose uptake in Corynebacterium glutamicum. Bioresource technology : biomass, bioenergy, biowastes, conversion technologies, biotransformations, production technologies, vol.249, 953-961.

  44. Sauer, Uwe, Eikmanns, Bernhard J.. The PEP–pyruvate–oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS microbiology reviews, vol.29, no.4, 765-794.

  45. Sato, H., Orishimo, K., Shirai, T., Hirasawa, T., Nagahisa, K., Shimizu, H., Wachi, M.. Distinct roles of two anaplerotic pathways in glutamate production induced by biotin limitation in Corynebacterium glutamicum. Journal of bioscience and bioengineering, vol.106, no.1, 51-58.

  46. 10.1007/10_2016_31 

  47. Shi, F., Fang, H., Niu, T., Lu, Z.. Overexpression of ppc and lysC to improve the production of 4-hydroxyisoleucine and its precursor l-isoleucine in recombinant Corynebacterium glutamicum ssp. lactofermentum. Enzyme and microbial technology, vol.87, 79-85.

  48. Shi, Feng, Zhang, Ming, Li, Yongfu. Overexpression of ppc or deletion of mdh for improving production of γ-aminobutyric acid in recombinant Corynebacterium glutamicum. World journal of microbiology & biotechnology, vol.33, no.6, 122-.

  49. Sawada, K., Wada, M., Hagiwara, T., Zen-in, S., Imai, K., Yokota, A.. Effect of pyruvate kinase gene deletion on the physiology of Corynebacterium glutamicum ATCC13032 under biotin-sufficient non-glutamate-producing conditions: Enhanced biomass production. Metabolic engineering communications, vol.2, 67-75.

  50. Sawada, K., Zen-in, S., Wada, M., Yokota, A.. Metabolic changes in a pyruvate kinase gene deletion mutant of Corynebacterium glutamicum ATCC 13032. Metabolic engineering, vol.12, no.4, 401-407.

  51. Cao, Yan, Duan, Zuoying, Shi, Zhongping. Effect of biotin on transcription levels of key enzymes and glutamate efflux in glutamate fermentation by Corynebacterium glutamicum. World journal of microbiology & biotechnology, vol.30, no.2, 461-468.

  52. Nakamura, Jun, Hirano, Seiko, Ito, Hisao, Wachi, Masaaki. Mutations of the Corynebacterium glutamicum NCgl1221 Gene, Encoding a Mechanosensitive Channel Homolog, Induce L -Glutamic Acid Production. Applied and environmental microbiology, vol.73, no.14, 4491-4498.

  53. Zhang, Bin, Yu, Miao, Zhou, Ying, Li, Yixue, Ye, Bang-Ce. Systematic pathway engineering of Corynebacterium glutamicum S9114 for L -ornithine production. Microbial cell factories, vol.16, 158-.

  54. Chen, Minliang, Chen, Xuelan, Wan, Fang, Zhang, Bin, Chen, Jincong, Xiong, Yonghua. Effect of Tween 40 and DtsR1 on L -arginine overproduction in Corynebacterium crenatum. Microbial cell factories, vol.14, 119-.

  55. Defining and Communicating Color : The CIELAB system 2013 

  56. 10.1201/9781420041484-1 

  57. Zhang, Hai Yan. Application of K/S Value in Determination of Fixation Rate. Advanced materials research : AMR, vol.1048, 116-119.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로