최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Inorganic chemistry, v.60 no.11, 2021년, pp.7708 - 7718
Pal, Raja (School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States) , Kim, Suyeon (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) , Lee, Woojong (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea) , Mena, Matthew R. (School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States) , Khurshid, Afshan (School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States) , Ghosh, Chandrani (School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States) , Groy, Thomas L. (School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States) , Chizmeshya, Andrew V. G. , Baik, Mu-Hyun , Trovitch, Ryan J.
Refluxing Mo(CO)6 in the presence of the phosphine-functionalized α-diimine ligand Ph2PPrDI allowed for substitution and formation of the dicarbonyl complex, (Ph2PPrDI)Mo(CO)2. Oxidation with I2 followed by heating resulted in further CO dissociation and isolation of the corresponding diiodide...
Activation of Small Molecules Aresta M. 1 2006
Sakakura, T., Choi, J.-C., Yasuda, H.. Transformation of Carbon Dioxide. Chemical reviews, vol.107, no.6, 2365-2387.
Mikkelsen, Mette, Jørgensen, Mikkel, Krebs, Frederik C.. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & environmental science, vol.3, no.1, 43-81.
Jessop, Philip G., Ikariya, Takao, Noyori, Ryoji. Homogeneous catalytic hydrogenation of supercritical carbon dioxide. Nature, vol.368, no.6468, 231-233.
Jessop, Philip G., Joó, Ferenc, Tai, Chih-Cheng. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination chemistry reviews, vol.248, no.21, 2425-2442.
Huff, Chelsea A., Sanford, Melanie S.. Cascade Catalysis for the Homogeneous Hydrogenation of CO2 to Methanol. Journal of the American Chemical Society, vol.133, no.45, 18122-18125.
Wesselbaum, Sebastian, vom Stein, Thorsten, Klankermayer, Jürgen, Leitner, Walter. Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium–Phosphine Catalyst. Angewandte Chemie. international edition, vol.51, no.30, 7499-7502.
Rezayee, Nomaan M., Huff, Chelsea A., Sanford, Melanie S.. Tandem Amine and Ruthenium-Catalyzed Hydrogenation of CO2 to Methanol. Journal of the American Chemical Society, vol.137, no.3, 1028-1031.
Spentzos, Ariana Z., Barnes, Charles L., Bernskoetter, Wesley H.. Effective Pincer Cobalt Precatalysts for Lewis Acid Assisted CO2 Hydrogenation. Inorganic chemistry, vol.55, no.16, 8225-8233.
Schneidewind, Jacob, Adam, Rosa, Baumann, Wolfgang, Jackstell, Ralf, Beller, Matthias. Low‐Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. Angewandte Chemie. international edition, vol.56, no.7, 1890-1893.
Kar, Sayan, Sen, Raktim, Goeppert, Alain, Prakash, G. K. Surya. Integrative CO2 Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy. Journal of the American Chemical Society, vol.140, no.5, 1580-1583.
Kar, Sayan, Sen, Raktim, Kothandaraman, Jotheeswari, Goeppert, Alain, Chowdhury, Ryan, Munoz, Socrates B., Haiges, Ralf, Prakash, G. K. Surya. Mechanistic Insights into Ruthenium-Pincer-Catalyzed Amine-Assisted Homogeneous Hydrogenation of CO2 to Methanol. Journal of the American Chemical Society, vol.141, no.7, 3160-3170.
Chu, Wan-Yi, Culakova, Zuzana, Wang, Bernie T., Goldberg, Karen I.. Acid-Assisted Hydrogenation of CO2 to Methanol in a Homogeneous Catalytic Cascade System. ACS catalysis, vol.9, no.10, 9317-9326.
Koinuma, Hideomi, Kawakami, Fumiaki, Kato, Hirohiko, Hirai, Hidefumi. Hydrosilylation of carbon dioxide catalysed by ruthenium complexes. Journal of the Chemical Society, Chemical communications, vol.1981, no.5, 213-214.
Matsuo, T., Kawaguchi, H.. From Carbon Dioxide to Methane: Homogeneous Reduction of Carbon Dioxide with Hydrosilanes Catalyzed by Zirconium−Borane Complexes. Journal of the American Chemical Society, vol.128, no.38, 12362-12363.
Park, Sehoon, Bézier, David, Brookhart, Maurice. An Efficient Iridium Catalyst for Reduction of Carbon Dioxide to Methane with Trialkylsilanes. Journal of the American Chemical Society, vol.134, no.28, 11404-11407.
Lalrempuia, Ralte, Iglesias, Manuel, Polo, Victor, Sanz Miguel, Pablo J., Fernández‐Alvarez, Francisco J., Pérez‐Torrente, Jesús J., Oro, Luis A.. Effective Fixation of CO2 by Iridium‐Catalyzed Hydrosilylation. Angewandte Chemie. international edition, vol.51, no.51, 12824-12827.
Sattler, Wesley, Parkin, Gerard. Zinc Catalysts for On-Demand Hydrogen Generation and Carbon Dioxide Functionalization. Journal of the American Chemical Society, vol.134, no.42, 17462-17465.
LeBlanc, Francis A., Piers, Warren E., Parvez, Masood. Selective Hydrosilation of CO2 to a Bis(silylacetal) Using an Anilido Bipyridyl‐Ligated Organoscandium Catalyst. Angewandte Chemie. international edition, vol.53, no.3, 789-792.
Rit, Arnab, Zanardi, Alessandro, Spaniol, Thomas P., Maron, Laurent, Okuda, Jun. A Cationic Zinc Hydride Cluster Stabilized by an N‐Heterocyclic Carbene: Synthesis, Reactivity, and Hydrosilylation Catalysis. Angewandte Chemie. international edition, vol.53, no.48, 13273-13277.
Takaya, Jun, Iwasawa, Nobuharu. Synthesis, Structure, and Catalysis of Palladium Complexes Bearing a Group 13 Metalloligand: Remarkable Effect of an Aluminum-Metalloligand in Hydrosilylation of CO2. Journal of the American Chemical Society, vol.139, no.17, 6074-6077.
Rauch, Michael, Parkin, Gerard. Zinc and Magnesium Catalysts for the Hydrosilylation of Carbon Dioxide. Journal of the American Chemical Society, vol.139, no.50, 18162-18165.
Bertini, Federica, Glatz, Mathias, Stöger, Berthold, Peruzzini, Maurizio, Veiros, Luis F., Kirchner, Karl, Gonsalvi, Luca. Carbon Dioxide Reduction to Methanol Catalyzed by Mn(I) PNP Pincer Complexes under Mild Reaction Conditions. ACS catalysis, vol.9, no.1, 632-639.
Zhang, Yu, Zhang, Tong, Das, Shoubhik. Catalytic transformation of CO2 into C1 chemicals using hydrosilanes as a reducing agent. Green chemistry : an international journal and green chemistry resource : GC, vol.22, no.6, 1800-1820.
Chakraborty, Sumit, Zhang, Jie, Krause, Jeanette A., Guan, Hairong. An Efficient Nickel Catalyst for the Reduction of Carbon Dioxide with a Borane. Journal of the American Chemical Society, vol.132, no.26, 8872-8873.
Suh, Hee-Won, Guard, Louise M., Hazari, Nilay. A mechanistic study of allene carboxylation with CO2resulting in the development of a Pd(II) pincer complex for the catalytic hydroboration of CO2. Chemical science, vol.5, no.10, 3859-.
Bontemps, S.. Boron-mediated activation of carbon dioxide. Coordination chemistry reviews, vol.308, no.2, 117-130.
Jin, Guanghua, Werncke, C. Gunnar, Escudié, Yannick, Sabo-Etienne, Sylviane, Bontemps, Sébastien. Iron-Catalyzed Reduction of CO2 into Methylene: Formation of C–N, C–O, and C–C Bonds. Journal of the American Chemical Society, vol.137, no.30, 9563-9566.
Pal, Raja, Groy, Thomas L., Trovitch, Ryan J.. Conversion of Carbon Dioxide to Methanol Using a C–H Activated Bis(imino)pyridine Molybdenum Hydroboration Catalyst. Inorganic chemistry, vol.54, no.15, 7506-7515.
Murphy, Luke J., Hollenhorst, Helia, McDonald, Robert, Ferguson, Michael, Lumsden, Michael D., Turculet, Laura. Selective Ni-Catalyzed Hydroboration of CO2 to the Formaldehyde Level Enabled by New PSiP Ligation. Organometallics, vol.36, no.19, 3709-3720.
Erken, Christina, Kaithal, Akash, Sen, Suman, Weyhermüller, Thomas, Hölscher, Markus, Werlé, Christophe, Leitner, Walter. Manganese-catalyzed hydroboration of carbon dioxide and other challenging carbonyl groups. Nature communications, vol.9, no.1, 4521-.
Espinosa, Matthew R., Charboneau, David J., Garcia de Oliveira, André, Hazari, Nilay. Controlling Selectivity in the Hydroboration of Carbon Dioxide to the Formic Acid, Formaldehyde, and Methanol Oxidation Levels. ACS catalysis, vol.9, no.1, 301-314.
Benson, Eric E., Kubiak, Clifford P., Sathrum, Aaron J., Smieja, Jonathan M.. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chemical Society reviews, vol.38, no.1, 89-99.
Rakowski Dubois, M., Dubois, Daniel L.. Development of Molecular Electrocatalysts for CO2 Reduction and H2 Production/Oxidation. Accounts of chemical research, vol.42, no.12, 1974-1982.
Windle, C.D., Perutz, R.N.. Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coordination chemistry reviews, vol.256, no.21, 2562-2570.
Qiao, Jinli, Liu, Yuyu, Hong, Feng, Zhang, Jiujun. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chemical Society reviews, vol.43, no.2, 631-675.
Francke, Robert, Schille, Benjamin, Roemelt, Michael. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts. Chemical reviews, vol.118, no.9, 4631-4701.
Fisher, Barbara J., Eisenberg, Richard. Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt. Journal of the American Chemical Society, vol.102, no.24, 7361-7363.
Collomb-Dunand-Sauthier, Marie-Noelle, Deronzier, Alain, Ziessel, Raymond. Electrocatalytic Reduction of Carbon Dioxide with Mono(bipyridine)carbonylruthenium Complexes in Solution or as Polymeric Thin Films. Inorganic chemistry, vol.33, no.13, 2961-2967.
Schneider, Jacob, Jia, Hongfei, Kobiro, Kazuya, Cabelli, Diane E., Muckerman, James T., Fujita, Etsuko. Nickel(II) macrocycles: highly efficient electrocatalysts for the selective reduction of CO2 to CO. Energy & environmental science, vol.5, no.11, 9502-9510.
Beley, Marc., Collin, Jean Paul., Ruppert, Romain., Sauvage, Jean Pierre.. Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. Journal of the American Chemical Society, vol.108, no.24, 7461-7467.
Johnson, F. P. A., George, M. W., Hartl, F., Turner, J. J.. Electrocatalytic Reduction of CO2 Using the Complexes [Re(bpy)(CO)3L]n (n = +1, L = P(OEt)3, CH3CN; n = 0, L = Cl-, Otf-; bpy = 2,2‘-Bipyridine; Otf- = CF3SO3) as Catalyst Precursors: Infrared Spectroelectrochemical Investigation. Organometallics, vol.15, no.15, 3374-3387.
Keith, John A., Grice, Kyle A., Kubiak, Clifford P., Carter, Emily A.. Elucidation of the Selectivity of Proton-Dependent Electrocatalytic CO2 Reduction by fac-Re(bpy)(CO)3Cl. Journal of the American Chemical Society, vol.135, no.42, 15823-15829.
Sampson, Matthew D., Nguyen, An D., Grice, Kyle A., Moore, Curtis E., Rheingold, Arnold L., Kubiak, Clifford P.. Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide: Eliminating Dimerization and Altering Catalysis. Journal of the American Chemical Society, vol.136, no.14, 5460-5471.
Riplinger, Christoph, Sampson, Matthew D., Ritzmann, Andrew M., Kubiak, Clifford P., Carter, Emily A.. Mechanistic Contrasts between Manganese and Rhenium Bipyridine Electrocatalysts for the Reduction of Carbon Dioxide. Journal of the American Chemical Society, vol.136, no.46, 16285-16298.
Sullivan, B. Patrick, Bolinger, C. Mark, Conrad, David, Vining, William J., Meyer, Thomas J.. One- and two-electron pathways in the electrocatalytic reduction of CO2 by fac-Re(bpy)(CO)3Cl (bpy = 2,2′-bipyridine). Journal of the Chemical Society, Chemical communications, vol.1985, no.20, 1414-1416.
Hayashi, Y., Kita, S., Brunschwig, B. S., Fujita, E.. Involvement of a Binuclear Species with the Re−C(O)O−Re Moiety in CO2 Reduction Catalyzed by Tricarbonyl Rhenium(I) Complexes with Diimine Ligands: Strikingly Slow Formation of the Re−Re and Re−C(O)O−Re Species from Re(dmb)(CO)3S (dmb = 4,4‘-Dimethyl-2,2‘-bipyridine, S = Solvent). Journal of the American Chemical Society, vol.125, no.39, 11976-11987.
Machan, Charles W., Chabolla, Steven A., Yin, Jian, Gilson, Michael K., Tezcan, F. Akif, Kubiak, Clifford P.. Supramolecular Assembly Promotes the Electrocatalytic Reduction of Carbon Dioxide by Re(I) Bipyridine Catalysts at a Lower Overpotential. Journal of the American Chemical Society, vol.136, no.41, 14598-14607.
Machan, Charles W., Yin, Jian, Chabolla, Steven A., Gilson, Michael K., Kubiak, Clifford P.. Improving the Efficiency and Activity of Electrocatalysts for the Reduction of CO2 through Supramolecular Assembly with Amino Acid-Modified Ligands. Journal of the American Chemical Society, vol.138, no.26, 8184-8193.
Agarwal, Jay, Fujita, Etsuko, Schaefer III, Henry F., Muckerman, James T.. Mechanisms for CO Production from CO2 Using Reduced Rhenium Tricarbonyl Catalysts. Journal of the American Chemical Society, vol.134, no.11, 5180-5186.
Hammouche, Mohamed, Lexa, Doris, Momenteau, Michel, Saveant, Jean Michel. Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron("0") porphyrins. Role of the addition of magnesium cations. Journal of the American Chemical Society, vol.113, no.22, 8455-8466.
Nakajima, Hiroshi, Kushi, Yoshinori, Nagao, Hirotaka, Tanaka, Koji. Multistep CO2 Reduction Catalyzed by [Ru(bpy)2(qu)(CO)]2+ (bpy = 2,2'-Bipyridine, qu = Quinoline). Double Methylation of the Carbonyl Moiety Resulting from Reductive Disproportionation of CO2. Organometallics, vol.14, no.11, 5093-5098.
Bhugun, I., Lexa, D., Saveant, J.-M.. Catalysis of the Electrochemical Reduction of Carbon Dioxide by Iron(0) Porphyrins. Synergistic Effect of Lewis Acid Cations. The Journal of physical chemistry, vol.100, no.51, 19981-19985.
Chen, Zuofeng, Chen, Chuncheng, Weinberg, David R., Kang, Peng, Concepcion, Javier J., Harrison, Daniel P., Brookhart, Maurice S., Meyer, Thomas J.. Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Chemical communications : Chem comm, vol.47, no.47, 12607-12609.
Machan, Charles W., Chabolla, Steven A., Kubiak, Clifford P.. Reductive Disproportionation of Carbon Dioxide by an Alkyl-Functionalized Pyridine Monoimine Re(I) fac-Tricarbonyl Electrocatalyst. Organometallics, vol.34, no.19, 4678-4683.
Sampson, Matthew D., Kubiak, Clifford P.. Manganese Electrocatalysts with Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide Reduction at Low Overpotentials. Journal of the American Chemical Society, vol.138, no.4, 1386-1393.
Myren, Tessa H. T., Alherz, Abdulaziz, Thurston, Jonathan R., Stinson, Taylor A., Huntzinger, Chloe G., Musgrave, Charles B., Luca, Oana R.. Mn-Based Molecular Catalysts for the Electrocatalytic Disproportionation of CO2 into CO and CO32-. ACS catalysis, vol.10, 1961-1968.
Fachinetti, Giuseppe, Floriani, Carlo, Chiesi-Villa, A., Guastini, Carlo. Carbon dioxide activation. Deoxygenation and disproportionation of carbon dioxide promoted by bis(cyclopentadienyl)titanium and -zirconium derivatives. A novel bonding mode of the carbonato and a trimer of the zirconyl unit. Journal of the American Chemical Society, vol.101, no.7, 1767-1775.
Maher, John M., Cooper, N. John. Reduction of carbon dioxide to carbon monoxide by transition-metal dianions. Journal of the American Chemical Society, vol.102, no.25, 7604-7606.
Reinking, Mark K., Ni, Jinfeng, Fanwick, Phillip E., Kubiak, Clifford P.. Carbon dioxide chemistry of a binuclear iridium(0) complex. Rapid and reversible oxygen atom transfer from carbonate. Journal of the American Chemical Society, vol.111, no.16, 6459-6461.
Davies, Noel W., Frey, Alistair S. P., Gardiner, Michael G., Wang, Jun. Reductive disproportionation of carbon dioxide by a Sm(II) complex: Unprecedented f-block element reactivity giving a carbonate complex. Chemical communications : Chem comm, vol.2006, no.46, 4853-4855.
Allen, Olivia R., Dalgarno, Scott J., Field, Leslie D.. Reductive Disproportionation of Carbon Dioxide at an Iron(II) Center. Organometallics, vol.27, no.14, 3328-3330.
Yoo, Changho, Lee, Yunho. Formation of a tetranickel octacarbonyl cluster from the CO2 reaction of a zero-valent nickel monocarbonyl species. Inorganic chemistry frontiers : an international journal of inorganic chemistry, vol.3, no.6, 849-855.
Mokhtarzadeh, Charles C., Moore, Curtis E., Rheingold, Arnold L., Figueroa, Joshua S.. Terminal Iron Carbyne Complexes Derived from Arrested CO2 Reductive Disproportionation. Angewandte Chemie. international edition, vol.56, no.36, 10894-10899.
Xémard, Mathieu, Goudy, Violaine, Braun, Augustin, Tricoire, Maxime, Cordier, Marie, Ricard, Louis, Castro, Ludovic, Louyriac, Elisa, Kefalidis, Christos E., Clavaguéra, Carine, Maron, Laurent, Nocton, Grégory. Reductive Disproportionation of CO2 with Bulky Divalent Samarium Complexes. Organometallics, vol.36, no.23, 4660-4668.
Vollmer, Matthew V., Cammarota, Ryan C., Lu, Connie C.. Reductive Disproportionation of CO2 Mediated by Bimetallic Nickelate(–I)/Group 13 Complexes. European journal of inorganic chemistry, vol.2019, no.15, 2140-2145.
Jori, Nadir, Falcone, Marta, Scopelliti, Rosario, Mazzanti, Marinella. Carbon Dioxide Reduction by Multimetallic Uranium(IV) Complexes Supported by Redox-Active Schiff Base Ligands. Organometallics, vol.39, no.9, 1590-1601.
Jurd, Peter M., Li, Hsiu L., Bhadbhade, Mohan, Field, Leslie D.. Fe(0)-Mediated Reductive Disproportionation of CO2. Organometallics, vol.39, no.10, 2011-2018.
Grice, Kyle A.. Carbon dioxide reduction with homogenous early transition metal complexes: Opportunities and challenges for developing CO2 catalysis. Coordination chemistry reviews, vol.336, 78-95.
Chatt, Joseph, Kubota, Mitsoru, Leigh, G. Jeffery, March, Frank C., Mason, Ronald, Yarrow, Douglas J.. A possible carbon dioxide complex of molybdenum and its rearrangement product di-µ-carbonato-bis{carbonyltris(dimethylphenylphosphine)molybdenum}: X-ray crystal structure. Journal of the Chemical Society, Chemical communications, vol.1974, no.24, 1033-1034.
Carmona, Ernesto, Gonzalez, Francisco, Poveda, Manuel L., Marin, Jose M., Atwood, Jerry L., Rogers, Robin D.. Reaction of cis-[Mo(N2)2(PMe3)4] with carbon dioxide. Synthesis and characterization of products of disproportionation and the x-ray structure of a tetrametallic mixed-valence Mo(II)-Mo(V) carbonate with a novel mode of carbonate binding. Journal of the American Chemical Society, vol.105, no.10, 3365-3366.
Alvarez, Rafael, Carmona, Ernesto, Poveda, Manuel L., Sanchez-Delgado, Roberto. Carbon dioxide chemistry. The synthesis and properties of trans-bis(carbon dioxide)tetrakis(trimethylphosphine)molybdenum (trans-[Mo(CO2)2(PMe3)4]): the first stable bis(carbon dioxide) adduct of a transition metal. Journal of the American Chemical Society, vol.106, no.9, 2731-2732.
Alvarez, Rafael, Atwood, Jerry L., Carmona, Ernesto, Perez, Pedro J., Poveda, Manuel L., Rogers, Robin D.. Formation of carbonyl-carbonate complexes of molybdenum by reductive disproportionation of carbon dioxide. X-ray structure of Mo4(.mu.4-CO3)(CO)2(O)2(.mu.2-O)2(.mu.2-OH)4(PMe3)6. Inorganic chemistry, vol.30, no.7, 1493-1499.
Lee, Gary R., Maher, John M., Cooper, N. John. Reductive disproportionation of carbon dioxide by dianionic carbonylmetalates of the transition metals. Journal of the American Chemical Society, vol.109, no.10, 2956-2962.
Belmore, Kenneth A., Vanderpool, Richard A., Tsai, Jing Cherng., Khan, Masood A., Nicholas, Kenneth M.. Transition-metal-mediated photochemical disproportionation of carbon dioxide. Journal of the American Chemical Society, vol.110, no.6, 2004-2005.
Porter, Tyler M., Hall, Gabriel B., Groy, Thomas L., Trovitch, Ryan J.. Importance of co-donor field strength in the preparation of tetradentate α-diimine nickel hydrosilylation catalysts. Dalton transactions : an international journal of inorganic chemistry, vol.42, no.41, 14689-14692.
Ghosh, Chandrani, Groy, Thomas L., Bowman, Amanda C., Trovitch, Ryan J.. Two-step C–H, C–P bond activation at an α-diimine iron dinitrogen complex. Chemical communications : Chem comm, vol.52, no.24, 4553-4556.
Ben-Daat, Hagit, Rock, Christopher L., Flores, Marco, Groy, Thomas L., Bowman, Amanda C., Trovitch, Ryan J.. Hydroboration of alkynes and nitriles using an α-diimine cobalt hydride catalyst. Chemical communications : Chem comm, vol.53, no.53, 7333-7336.
Rock, Christopher L., Groy, Thomas L., Trovitch, Ryan J.. Carbonyl and ester C-O bond hydrosilylation using κ4-diimine nickel catalysts. Dalton transactions : an international journal of inorganic chemistry, vol.47, no.26, 8807-8816.
Rock, Christopher L., Trovitch, Ryan J.. Anti-Markovnikov terminal and gem-olefin hydrosilylation using a κ4-diimine nickel catalyst: selectivity for alkene hydrosilylation over ether C-O bond cleavage. Dalton transactions : an international journal of inorganic chemistry, vol.48, no.2, 461-467.
Pal, Raja, Groy, Thomas L., Bowman, Amanda C., Trovitch, Ryan J.. Preparation and Hydrosilylation Activity of a Molybdenum Carbonyl Complex That Features a Pentadentate Bis(imino)pyridine Ligand. Inorganic chemistry, vol.53, no.17, 9357-9365.
Baker, P.K., Fraser, S.G., Keys, E.M.. The synthesis and spectral properties of some highly reactive new seven-coordinate molybdenum(II) and tungsten(II) bisacetonitrile dihalogenotricarbonyl complexes. Journal of organometallic chemistry, vol.309, no.3, 319-321.
Pal, Raja, Cherry, Brian R., Flores, Marco, Groy, Thomas L., Trovitch, Ryan J.. Isolation of a bis(imino)pyridine molybdenum(I) iodide complex through controlled reduction and interconversion of its reaction products. Dalton transactions : an international journal of inorganic chemistry, vol.45, no.24, 10024-10033.
Khusniyarov, Marat M., Harms, Klaus, Burghaus, Olaf, Sundermeyer, Jörg. Molecular and Electronic Structures of Homoleptic Nickel and Cobalt Complexes with Non-Innocent Bulky Diimine Ligands Derived from Fluorinated 1,4-Diaza-1,3-butadiene (DAD) and Bis(arylimino)acenaphthene (BIAN). European journal of inorganic chemistry, vol.2006, no.15, 2985-2996.
Khusniyarov, Marat M., Weyhermüller, Thomas, Bill, Eckhard, Wieghardt, Karl. Tuning the Oxidation Level, the Spin State, and the Degree of Electron Delocalization in Homo- and Heteroleptic Bis(α-diimine)iron Complexes. Journal of the American Chemical Society, vol.131, no.3, 1208-1221.
Wolczanski, Peter T.. Flipping the Oxidation State Formalism: Charge Distribution in Organometallic Complexes As Reported by Carbon Monoxide. Organometallics, vol.36, no.3, 622-631.
Manos, Manolis J., Keramidas, Anastasios D., Woollins, J. Derek, Slawin, Alexandra M. Z., Kabanos, Themistoklis A.. The first polyoxomolybdenum carbonate compound: Synthesis and crystal structure of (NH4)5[(Mo2VO4)3(μ6-CO3)(μ-CO3)3(μ-OH)3]·0.5CH3OH 1. Dalton : an international journal of inorganic chemistry, vol.2001, no.23, 3419-3420.
Density Functional Theory of Atoms and Molecules Parr R. G. 1989
Bochevarov, Art D., Harder, Edward, Hughes, Thomas F., Greenwood, Jeremy R., Braden, Dale A., Philipp, Dean M., Rinaldo, David, Halls, Mathew D., Zhang, Jing, Friesner, Richard A.. Jaguar: A high‐performance quantum chemistry software program with strengths in life and materials sciences. International journal of quantum chemistry, vol.113, no.18, 2110-2142.
Quantum Theory of Molecules and Solids Slater J. C. 4 1974
Vosko, S. H., Wilk, L., Nusair, M.. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian journal of physics, vol.58, no.8, 1200-1211.
Becke, A. D.. Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review. A, General physics, vol.38, no.6, 3098-3100.
Lee, Chengteh, Yang, Weitao, Parr, Robert G.. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review. B, Condensed matter, vol.37, no.2, 785-789.
Becke, Axel D.. Density-functional thermochemistry. III. The role of exact exchange. The Journal of chemical physics, vol.98, no.7, 5648-5652.
Grimme, Stefan, Antony, Jens, Ehrlich, Stephan, Krieg, Helge. A consistent and accurateab initioparametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, vol.132, no.15, 154104-.
Hehre, W. J., Ditchfield, R., Pople, J. A.. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of chemical physics, vol.56, no.5, 2257-2261.
Hay, P. Jeffrey, Wadt, Willard R.. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of chemical physics, vol.82, no.1, 270-283.
Wadt, Willard R., Hay, P. Jeffrey. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. The Journal of chemical physics, vol.82, no.1, 284-298.
Hay, P. Jeffrey, Wadt, Willard R.. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of chemical physics, vol.82, no.1, 299-310.
Dunning Jr., Thom H.. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. The Journal of chemical physics, vol.90, no.2, 1007-1023.
Marten, B., Kim, K., Cortis, C., Friesner, R. A., Murphy, R. B., Ringnalda, M. N., Sitkoff, D., Honig, B.. New Model for Calculation of Solvation Free Energies: Correction of Self-Consistent Reaction Field Continuum Dielectric Theory for Short-Range Hydrogen-Bonding Effects. The Journal of physical chemistry, vol.100, no.28, 11775-11788.
Friedrichs, M., Zhou, R., Edinger, S. R., Friesner, R. A.. Poisson−Boltzmann Analytical Gradients for Molecular Modeling Calculations. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol.103, no.16, 3057-3061.
Edinger, S. R., Cortis, C., Shenkin, P. S., Friesner, R. A.. Solvation Free Energies of Peptides: Comparison of Approximate Continuum Solvation Models with Accurate Solution of the Poisson−Boltzmann Equation. The journal of physical chemistry. B, Materials, surfaces, interfaces & biophysical, vol.101, no.7, 1190-1197.
Rashin, Alexander A., Honig, Barry. Reevaluation of the Born model of ion hydration. The Journal of physical chemistry, vol.89, no.26, 5588-5593.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.