$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland 원문보기

Microorganisms, v.8 no.11, 2020년, pp.1719 -   

Jung, Gi-Yong (Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea) ,  Rhee, Sung-Keun (seraphim0123@gmail.com) ,  Han, Young-Soo (Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea) ,  Kim, So-Jeong (rhees@chungbuk.ac.kr)

Abstract AI-Helper 아이콘AI-Helper

Methane-oxidizing bacteria are crucial players in controlling methane emissions. This study aimed to isolate and characterize a novel wetland methanotroph to reveal its role in the wetland environment based on genomic information. Based on phylogenomic analysis, the isolated strain, designated as B8...

Keyword

참고문헌 (111)

  1. 1. Whiting G.J. Chanton J.P. Primary production control of methane emission from wetlands Nat. Cell Biol. 1993 364 794 795 10.1038/364794a0 

  2. 2. Mitsch W.J. Bernal B. Nahlik A.M. Mander U. Zhang L. Anderson C.J. Jorgensen S.E. Brix H. Wetlands, carbon, and climate change Landsc. Ecol. 2012 28 583 597 10.1007/s10980-012-9758-8 

  3. 3. Shao X. Sheng X. Wu M. Wu H. Ning X. Methane production potential and emission at different water levels in the restored reed wetland of Hangzhou Bay PLoS ONE 2017 12 e0185709 10.1371/journal.pone.0185709 28968419 

  4. 4. Kirschke S. Bousquet P. Ciais P. Saunois M. Canadell J.G. Dlugokencky E. Bergamaschi P. Bergmann D. Blake D.R. Bruhwiler L.M.P. Three decades of global methane sources and sinks Nat. Geosci. 2013 6 813 823 10.1038/ngeo1955 

  5. 5. Bastviken D. Cole J. Pace M. Tranvik L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate Glob. Biogeochem. Cycles 2004 18 18 10.1029/2004GB002238 

  6. 6. Conrad R. The global methane cycle: Recent advances in understanding the microbial processes involved Environ. Microbiol. Rep. 2009 1 285 292 10.1111/j.1758-2229.2009.00038.x 23765881 

  7. 7. King G.M. Ecological aspects of methane oxidation, a key determinant of global methane dynamics Advances in Microbial Ecology Springer Berlin, Germany 1992 431 468 

  8. 8. Chowdhury T.R. Dick R.P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands Appl. Soil Ecol. 2013 65 8 22 10.1016/j.apsoil.2012.12.014 

  9. 9. Stocker T.F. Qin D. Plattner G.-K. Tignor M. Allen S.K. Boschung J. Nauels A. Xia Y. Bex V. Midgley P.M. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change Evaluation of Climate Models Cambridge University Press Cambridge, UK 2013 1535 

  10. 10. Dedysh S.N. Eknief C. Diversity and phylogeny of described aerobic methanotrophs Methane Biocatalysis: Paving the Way to Sustainability Springer Berlin, Germany 2018 17 42 

  11. 11. Semrau J.D. DiSpirito A.A. Yoon S. Methanotrophs and copper FEMS Microbiol. Rev. 2010 34 496 531 10.1111/j.1574-6976.2010.00212.x 20236329 

  12. 12. Hanson R.S. The obligate methanotrophic bacteria Merhvlococcus . Methylomonas , and Methylosinus The Procaryotes Springer Berlin, Germany 1992 2350 2364 

  13. 13. Oremland R.S. Culbertson C.W. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor Nat. Cell Biol. 1992 356 421 423 10.1038/356421a0 

  14. 14. Dalton H. Methane Oxidation by Methanotrophs Methane and Methanol Utilizers Springer Berlin, Germany 1992 85 114 

  15. 15. Murrell J.C. Gilbert B. McDonald I.R. Molecular biology and regulation of methane monooxygenase Arch. Microbiol. 2000 173 325 332 10.1007/s002030000158 10896210 

  16. 16. Fox B.G. Afroland W. Jollie D.R. Lipscomb J.D. Methane monooxygenase from Methylosinus trichosporium OB3b Methods Enzymol. 1990 188 191 202 10.1016/0076-6879(90)88033-7 2280705 

  17. 17. DeWitt J.G. Bentsen J.G. Rosenzweig A.C. Hedman B. Green J. Pilkington S. Papaefthymiou G.C. Dalton H. Hodgson K.O. Lippard S.J. X-ray absorption, Moessbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase J. Am. Chem. Soc. 1991 113 9219 9235 10.1021/ja00024a031 

  18. 18. Nguyen H.H. Shiemke A.K. Jacobs S.J. Hales B.J. Lidstrom M.E. Chan S.I. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath) J. Biol. Chem. 1994 269 14995 15005 8195135 

  19. 19. Anthony C. Zatman L.J. The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: A new oxidoreductase prosthetic group Biochem. J. 1967 104 960 969 10.1042/bj1040960 6049934 

  20. 20. Vorholt J.A. Chistoserdova L. Lidstrom M.E. Thauer R.K. The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1 J. Bacteriol. 1998 180 5351 5356 10.1128/JB.180.20.5351-5356.1998 9765566 

  21. 21. Marx C.J. Chistoserdova L. Lidstrom M.E. Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM J. Bacteriol. 2003 185 7160 7168 10.1128/JB.185.23.7160-7168.2003 14645276 

  22. 22. Chistoserdova L. VanWiggeren G.D. Roy R. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea Science 1998 281 99 102 10.1126/science.281.5373.99 9651254 

  23. 23. Strong P.J. Xie S. Clarke W.P. Methane as a resource: Can the methanotrophs add value? Environ. Sci. Technol. 2015 49 4001 4018 10.1021/es504242n 25723373 

  24. 24. Haynes C.A. Gonzalez R. Rethinking biological activation of methane and conversion to liquid fuels Nat. Chem. Biol. 2014 10 331 339 10.1038/nchembio.1509 24743257 

  25. 25. Bordel S. Rojas A. Munoz R. Reconstruction of a genome scale metabolic model of the polyhydroxybutyrate producing methanotroph Methylocystis parvus OBBP Microb. Cell Factories 2019 18 1 11 10.1186/s12934-019-1154-5 31170985 

  26. 26. Strong P.J. Laycock B. Mahamud S.N.S. Jensen P.D. Lant P.A. Tyson G.W. Pratt S. The opportunity for high-performance biomaterials from methane Microorganisms 2016 4 11 10.3390/microorganisms4010011 

  27. 27. Kalyuzhnaya M.G. Yang S. Rozova O.N. Smalley N.E. Clubb J. Lamb A. Gowda G.A.N. Raftery D. Fu Y. Bringel F. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium Nat. Commun. 2013 4 1 7 10.1038/ncomms3785 

  28. 28. Bowman J.P. Sly L.I. Nichols P.D. Hayward A.C. Revised taxonomy of the methanotrophs: Description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs Int. J. Syst. Bacteriol. 1993 43 735 753 10.1099/00207713-43-4-735 

  29. 29. Whittenbury R. Davies S.L. Davey J.F. Exospores and cysts formed by methane-utilizing bacteria J. Gen. Microbiol. 1970 61 219 226 10.1099/00221287-61-2-219 5476892 

  30. 30. Wartiainen I. Hestnes A.G. McDonald I.R. Svenning M.M. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N) Int. J. Syst. Evol. Microbiol. 2006 56 541 547 10.1099/ijs.0.63912-0 16514024 

  31. 31. Lindner A.S. Pacheco A. Aldrich H.C. Staniec A.C. Uz I. Hodson D.J. Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer Int. J. Syst. Evol. Microbiol. 2007 57 1891 1900 10.1099/ijs.0.64541-0 17684277 

  32. 32. Belova S.E. Kulichevskaya I.S. Bodelier P.L.E. Dedysh S.N. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al Int. J. Syst. Evol. Microbiol. 2013 63 1096 1104 10.1099/ijs.0.043505-0 22707532 

  33. 33. Dedysh S.N. Belova S.E. Bodelier P.L.E. Smirnova K.V. Khmelenina V.N. Chidthaisong A. Trotsenko Y.A. Liesack W. Dunfield P.F. Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs Int. J. Syst. Evol. Microbiol. 2007 57 472 479 10.1099/ijs.0.64623-0 17329771 

  34. 34. Dam B. Dam S. Blom J. Liesack W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2 PLoS ONE 2013 8 e74767 10.1371/journal.pone.0074767 24130670 

  35. 35. Stein L.Y. Bringel F. DiSpirito A.A. Han S. Jetten M.S.M. Kalyuzhnaya M.G. Kits K.D. Klotz M.G. Camp H.J.M.O.D. Semrau J.D. Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242) J. Bacteriol. 2011 193 2668 2669 10.1128/JB.00278-11 21441518 

  36. 36. Han D. Dedysh S.N. Liesack W. Unusual genomic traits suggest Methylocystis bryophila S285 to be well adapted for life in peatlands Genome Biol. Evol. 2018 10 623 628 10.1093/gbe/evy025 29390143 

  37. 37. Nguyen N.-L. Yu W.-J. Gwak J.-H. Kim S.-J. Park S.-J. Herbold C.W. Kim J.-G. Jung M.-Y. Rhee S.-K. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils Front. Microbiol. 2018 9 1982 10.3389/fmicb.2018.01982 30210468 

  38. 38. Vorobev A. Jagadevan S. Jain S. Anantharaman K. Dick G.J. Vuilleumier S. Semrau J.D. Genomic and Transcriptomic analyses of the facultative methanotroph Methylocystis sp. Strain SB2 grown on methane or ethanol Appl. Environ. Microbiol. 2014 80 3044 3052 10.1128/AEM.00218-14 24610846 

  39. 39. Belova S.E. Baani M. Suzina N.E. Bodelier P.L. Liesack W. Dedysh S.N. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ. Microbiol. Rep. 2011 3 36 46 10.1111/j.1758-2229.2010.00180.x 23761229 

  40. 40. Knief C. Dunfield P.F. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios Environ. Microbiol. 2005 7 1307 1317 10.1111/j.1462-2920.2005.00814.x 16104854 

  41. 41. Dunfield P.F. The soil methane sink Greenhouse Gas Sinks CABI Wallingford, CT, USA 2009 152 170 10.1079/9781845931896.0152 

  42. 42. Smith E.J. Davison W. Hamilton-Taylor J. Methods for preparing synthetic freshwaters Water Res. 2002 36 1286 1296 10.1016/S0043-1354(01)00341-4 11902783 

  43. 43. Widdel F. Bak F. Gram-Negative Mesophilic sulfate-reducing bacteria The Prokaryotes Springer Berlin, Germany 1992 3352 3378 

  44. 44. Whittenbury R. Phillips K.C. Wilkinson J.F. Enrichment, isolation and some properties of methane-utilizing bacteria J. Gen. Microbiol. 1970 61 205 218 10.1099/00221287-61-2-205 5476891 

  45. 45. Kim S.-J. Park S.-J. Cha I.-T. Min D. Kim J.-S. Chung W.-H. Chae J.-C. Jeon C.O. Rhee S.-K. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis Environ. Microbiol. 2013 16 189 204 10.1111/1462-2920.12277 24118987 

  46. 46. Jung M.-Y. Park S.-J. Min D. Kim J.-S. Rijpstra W.I.C. Damste J.S.S. Kim G.-J. Madsen E.L. Rhee S.-K. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil Appl. Environ. Microbiol. 2011 77 8635 8647 10.1128/AEM.05787-11 22003023 

  47. 47. Holmes A.J. Costello A. Lidstrom M.E. Murrell J.C. Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related FEMS Microbiol. Lett. 1995 132 203 208 10.1111/j.1574-6968.1995.tb07834.x 7590173 

  48. 48. Hakobyan A. Zhu J. Glatter T. Paczia N. Liesack W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs Metab. Eng. 2020 61 181 196 10.1016/j.ymben.2020.05.003 32479801 

  49. 49. Lane D. 16S/23S rRNA sequencing Nucleic Acid Techniques in Bacterial Systematics Wiley Hoboken, NJ, USA 1991 115 175 

  50. 50. Weisburg W.G. Barns S.M. Pelletier D.A. Lane D.J. 16S ribosomal DNA amplification for phylogenetic study J. Bacteriol. 1991 173 697 703 10.1128/JB.173.2.697-703.1991 1987160 

  51. 51. Miguez C. Bourque D. Sealy J. Greer C. Groleau D. Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR) Microb. Ecol. 1997 33 21 31 10.1007/s002489900004 9039762 

  52. 52. Hutchens E. Radajewski S. Dumont M.G. McDonald I.R. Murrell J.C. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing Environ. Microbiol. 2003 6 111 120 10.1046/j.1462-2920.2003.00543.x 

  53. 53. Saitou N. Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees Mol. Biol. Evol. 1987 4 406 425 10.1093/oxfordjournals.molbev.a040454 3447015 

  54. 54. Lewis P.O. Kumar S. Tamura K. Nei M. MEGA: Molecular evolutionary genetics analysis, Version 1.02 Syst. Biol. 1995 44 576 10.2307/2413665 

  55. 55. Yoon S.-H. Ha S.-M. Kwon S. Lim J. Kim Y. Seo H. Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies Int. J. Syst. Evol. Microbiol. 2017 67 1613 1617 10.1099/ijsem.0.001755 28005526 

  56. 56. Bankevich A. Nurk S. Antipov D. Gurevich A.A. Dvorkin M. Kulikov A.S. Lesin V.M. Nikolenko S.I. Pham S. Prjibelski A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing J. Comput. Biol. 2012 19 455 477 10.1089/cmb.2012.0021 22506599 

  57. 57. Tatusova T. DiCuccio M. Badretdin A. Chetvernin V. Nawrocki E.P. Zaslavsky L. Lomsadze A. Pruitt K.D. Borodovsky M. Ostell J. NCBI prokaryotic genome annotation pipeline Nucleic Acids Res. 2016 44 6614 6624 10.1093/nar/gkw569 27342282 

  58. 58. Camacho C. Coulouris G. Avagyan V. Ma N. Papadopoulos J.S. Bealer K. Madden T.L. BLAST+: Architecture and applications BMC Bioinform. 2009 10 421 10.1186/1471-2105-10-421 

  59. 59. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs Nucleic Acids Res. 2016 45 D353 D361 10.1093/nar/gkw1092 27899662 

  60. 60. Mistry J. Bateman A. Finn R.D. Predicting active site residue annotations in the Pfam database BMC Bioinform. 2007 8 1 14 10.1186/1471-2105-8-298 

  61. 61. Lee I. Kim Y.O. Park S.-C. Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity Int. J. Syst. Evol. Microbiol. 2016 66 1100 1103 10.1099/ijsem.0.000760 26585518 

  62. 62. Zhao Y. Wu J. Yang J. Sun S. Xiao J. Yu J. PGAP: Pan-genomes analysis pipeline Bioinformatics 2011 28 416 418 10.1093/bioinformatics/btr655 22130594 

  63. 63. Eren A.M. Esen O.C. Quince C. Vineis J.H. Morrison H.G. Sogin M.L. Delmont T.O. Anvi’o: An advanced analysis and visualization platform for omics data PeerJ 2015 3 e1319 10.7717/peerj.1319 26500826 

  64. 64. Alcock B.P. Raphenya A.R. Lau T.T.Y. Tsang K.K. Bouchard M. Edalatmand A. Huynh W. Nguyen A.-L.V. Cheng A.A. Liu S. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database Nucleic Acids Res. 2020 48 D517 D525 10.1093/nar/gkz935 31665441 

  65. 65. Lee S.-P. Park J.-C. Management of organic matters by constructed treatment wetlands during rainfall events J. Environ. Sci. Int. 2017 26 401 410 10.5322/JESI.2017.26.3.401 

  66. 66. Kwon J.-H. Han Y.-S. Cho Y.-C. Ahn J.-S. Yim G.-J. Water Quality and Methane emission characteristics of aerobic wetlands constructed in coal mine area J. Korean Soc. Miner. Energy Resour. Eng. 2018 55 371 382 10.32390/ksmer.2018.55.5.371 

  67. 67. Im J. Lee S.-W. Yoon S. DiSpirito A.A. Semrau J.D. Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol Environ. Microbiol. Rep. 2010 3 174 181 10.1111/j.1758-2229.2010.00204.x 23761249 

  68. 68. Reid R. Mosley L.M. Comparative contributions of solution geochemistry, microbial metabolism and aquatic photosynthesis to the development of high pH in ephemeral wetlands in South East Australia Sci. Total. Environ. 2016 542 334 343 10.1016/j.scitotenv.2015.10.040 26519593 

  69. 69. Dianou D. Adachi K. Dianou D. Characterization of methanotrophic bacteria isolated from a subtropical paddy field FEMS Microbiol. Lett. 1999 173 163 173 10.1111/j.1574-6968.1999.tb13498.x 

  70. 70. Hou C.T. Laskin A.I. Patel R.N. Growth and polysaccharide production by Methylocystis parvus OBBP on methanol Appl. Environ. Microbiol. 1979 37 800 804 10.1128/AEM.37.5.800-804.1979 16345377 

  71. 71. Jo S.Y. Na Rhie M. Jung S.M. Sohn Y.J. Yeon Y.J. Kim M.-S. Park C. Lee J. Park S.J. Na J.-G. Hydrogen production from methane by Methylomonas sp. DH-1 under micro-aerobic conditions Biotechnol. Bioprocess Eng. 2020 25 71 77 10.1007/s12257-019-0256-6 

  72. 72. Dam B. Kube M. Dam S. Reinhardt R. Liesack W. Complete sequence analysis of two methanotroph-specific repABC-containing plasmids from Methylocystis sp. strain SC2 Appl. Environ. Microbiol. 2012 78 4373 4379 10.1128/AEM.00628-12 22504811 

  73. 73. Konstantinidis K.T. Tiedje J.M. Towards a genome-based taxonomy for prokaryotes J. Bacteriol. 2005 187 6258 6264 10.1128/JB.187.18.6258-6264.2005 16159757 

  74. 74. Konstantinidis K.T. Ramette A.N. Tiedje J.M. The bacterial species definition in the genomic era Philos. Trans. R. Soc. B Biol. Sci. 2006 361 1929 1940 10.1098/rstb.2006.1920 

  75. 75. Tatusov R.L. Koonin E.V. Lipman D.J. A Genomic perspective on protein families Science 1997 278 631 637 10.1126/science.278.5338.631 9381173 

  76. 76. Oshkin I.Y. Miroshnikov K.K. Grouzdev D.S. Dedysh S.N. Pan-genome-based analysis as a framework for demarcating two closely related methanotroph genera Methylocystis and Methylosinus Microorganisms 2020 8 768 10.3390/microorganisms8050768 

  77. 77. Stolyar S. Costello A.M. Peeples T.L. Lidstrom M.E. Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath Microbiology 1999 145 1235 1244 10.1099/13500872-145-5-1235 10376840 

  78. 78. Matsen J.B. Yang S. Stein L.Y. Beck D.A. Kalyuzhanaya M.G. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic study Front. Microbiol. 2013 4 40 10.3389/fmicb.2013.00040 23565111 

  79. 79. Cai Y. Zheng Y. Bodelier P.L.E. Conrad R. Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils Nat. Commun. 2016 7 11728 10.1038/ncomms11728 27248847 

  80. 80. Baani M. Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2 Proc. Natl. Acad. Sci. USA 2008 105 10203 10208 10.1073/pnas.0702643105 18632585 

  81. 81. Dunfield P.F. Liesack W. Henckel T. Knowles R. Conrad R. High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph Appl. Environ. Microbiol. 1999 65 1009 1014 10.1128/AEM.65.3.1009-1014.1999 10049856 

  82. 82. Anthony C. Ghosh M. Blake C.C.F. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone Biochem. J. 1994 304 665 674 10.1042/bj3040665 7818466 

  83. 83. Anthony C. Williams P. The structure and mechanism of methanol dehydrogenase Biochim. Biophys. Acta (BBA) Proteins Proteom. 2003 1647 18 23 10.1016/S1570-9639(03)00042-6 

  84. 84. Nakagawa T. Mitsui R. Tani A. Sasa K. Tashiro S. Iwama T. Hayakawa T. Kawai K. A Catalytic Role of XoxF1 as La 3+ -dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1 PLoS ONE 2012 7 e50480 10.1371/journal.pone.0050480 23209751 

  85. 85. Keltjens J.T. Pol A. Reimann J. Camp H.J.M.O.D. PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference Appl. Microbiol. Biotechnol. 2014 98 6163 6183 10.1007/s00253-014-5766-8 24816778 

  86. 86. Picone N. Camp H.J.M.O.D. Role of rare earth elements in methanol oxidation Curr. Opin. Chem. Biol. 2019 49 39 44 10.1016/j.cbpa.2018.09.019 30308436 

  87. 87. Krause S.M.B. Johnson T. Karunaratne Y.S. Fu Y. Beck D.A.C. Chistoserdova L. Lidstrom M.E. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions Proc. Natl. Acad. Sci. USA 2016 114 358 363 10.1073/pnas.1619871114 28028242 

  88. 88. Salisbury S.A. Forrest H.S. Cruse W.B.T. Kennard O. A novel coenzyme from bacterial primary alcohol dehydrogenases Nat. Cell Biol. 1979 280 843 844 10.1038/280843a0 

  89. 89. Anthony C. The quinoprotein dehydrogenases for methanol and glucose Arch. Biochem. Biophys. 2004 428 2 9 10.1016/j.abb.2004.03.038 15234264 

  90. 90. Murrell J.C. Dalton H. Nitrogen fixation in obligate methanotrophs Microbiology 1983 129 3481 3486 10.1099/00221287-129-11-3481 

  91. 91. Auman A.J. Speake C.C. Lidstrom M.E. nifH Sequences and nitrogen fixation in type I and type II methanotrophs Appl. Environ. Microbiol. 2001 67 4009 4016 10.1128/AEM.67.9.4009-4016.2001 11525998 

  92. 92. Dedysh S.N. Ricke P. Liesack W. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria Microbiology 2004 150 1301 1313 10.1099/mic.0.26585-0 15133093 

  93. 93. Bedard C. Knowles R. Physiology, biochemistry, and specific inhibitors of CH 4 , NH 4 + , and CO oxidation by methanotrophs and nitrifiers Microbiol. Rev. 1989 53 68 84 10.1128/MMBR.53.1.68-84.1989 2496288 

  94. 94. Graf E.-G. Thauer R.K. Hydrogenase from methanobacterium thermoautotrophicum, a nickel-containing enzyme FEBS Lett. 1981 136 165 169 10.1016/0014-5793(81)81238-0 

  95. 95. Thauer R.K. Klein A.A.R. Hartmann G.C. Reactions with molecular hydrogen in microorganisms: Evidence for a purely organic hydrogenation catalyst Chem. Rev. 1996 96 3031 3042 10.1021/cr9500601 11848851 

  96. 96. Pavlov M. Siegbahn P.E.M. Blomberg M.R.A. Crabtree R.H. Mechanism of H?H activation by nickel?iron hydrogenase J. Am. Chem. Soc. 1998 120 548 555 10.1021/ja971681+ 

  97. 97. Greening C. Biswas A. Carere C.R. Jackson C.J. Taylor M.C. Stott M.B. Cook G.M. Morales S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H 2 is a widely utilised energy source for microbial growth and survival ISME J. 2015 10 761 777 10.1038/ismej.2015.153 26405831 

  98. 98. Cal A.J. Sikkema W.D. Ponce M.I. Franqui-Villanueva D. Riiff T.J. Orts W.J. Pieja A.J. Lee C.C. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content Int. J. Biol. Macromol. 2016 87 302 307 10.1016/j.ijbiomac.2016.02.056 26920242 

  99. 99. Khosravi-Darani K. Mokhtari Z.-B. Amai T. Tanaka K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources Appl. Microbiol. Biotechnol. 2013 97 1407 1424 10.1007/s00253-012-4649-0 23306640 

  100. 100. Byrom D.P. Plastics from Microbes: Microbial Synthesis of Polymers and Polymer Precursors Hanser Munich, Germany 1994 5 

  101. 101. Braunegg G. Sonnleitner B. Lafferty R.M. A rapid gas chromatographic method for the determination of poly-?-hydroxybutyric acid in microbial biomass Appl. Microbiol. Biotechnol. 1978 6 29 37 10.1007/BF00500854 

  102. 102. Gunes A. Pilbeam D.J. Inal A. Effect of arsenic?phosphorus interaction on arsenic-induced oxidative stress in chickpea plants Plant Soil 2008 314 211 220 10.1007/s11104-008-9719-9 

  103. 103. Slyemi D. Bonnefoy V. How prokaryotes deal with arsenic† Environ. Microbiol. Rep. 2011 4 571 586 10.1111/j.1758-2229.2011.00300.x 23760928 

  104. 104. Herath I. Vithanage M. Bundschuh J. Maity J.P. Bhattacharya P. Natural arsenic in global groundwaters: Distribution and geochemical triggers for mobilization Curr. Pollut. Rep. 2016 2 68 89 10.1007/s40726-016-0028-2 

  105. 105. Patil Y.B. Paknikar K. Development of a process for biodetoxification of metal cyanides from waste waters Process. Biochem. 2000 35 1139 1151 10.1016/S0032-9592(00)00150-3 

  106. 106. Gupta N. Balomajumder C. Agarwal V.K. Enzymatic mechanism and biochemistry for cyanide degradation: A review J. Hazard. Mater. 2010 176 1 13 10.1016/j.jhazmat.2009.11.038 20004515 

  107. 107. Dash H.R. Das S. Bioremediation of mercury and the importance of bacterial mer genes Int. Biodeterior. Biodegrad. 2012 75 207 213 10.1016/j.ibiod.2012.07.023 

  108. 108. Vorobev A. Jagadevan S. Baral B.S. DiSpirito A.A. Freemeier B.C. Bergman B.H. Bandow N.L. Semrau J.D. Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b Appl. Environ. Microbiol. 2013 79 5918 5926 10.1128/AEM.01673-13 23872554 

  109. 109. Shi L.-D. Chen Y.-S. Du J.-J. Hu Y.-Q. Shapleigh J.P. Zhao H.-P. Metagenomic evidence for a Methylocystis species capable of bioremediation of diverse heavy metals Front. Microbiol. 2019 9 3297 10.3389/fmicb.2018.03297 30687279 

  110. 110. Boden R. Murrell J.C. Response to mercury (II) ions in Methylococcus capsulatus (Bath) FEMS Microbiol. Lett. 2011 324 106 110 10.1111/j.1574-6968.2011.02395.x 22092810 

  111. 111. Lu X. Gu W. Zhao L. Haque M.F.U. DiSpirito A.A. Semrau J.D. Gu B. Methylmercury uptake and degradation by methanotrophs Sci. Adv. 2017 3 e1700041 10.1126/sciadv.1700041 28580426 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로