최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Microorganisms, v.8 no.11, 2020년, pp.1719 -
Jung, Gi-Yong (Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea) , Rhee, Sung-Keun (seraphim0123@gmail.com) , Han, Young-Soo (Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea) , Kim, So-Jeong (rhees@chungbuk.ac.kr)
Methane-oxidizing bacteria are crucial players in controlling methane emissions. This study aimed to isolate and characterize a novel wetland methanotroph to reveal its role in the wetland environment based on genomic information. Based on phylogenomic analysis, the isolated strain, designated as B8...
1. Whiting G.J. Chanton J.P. Primary production control of methane emission from wetlands Nat. Cell Biol. 1993 364 794 795 10.1038/364794a0
2. Mitsch W.J. Bernal B. Nahlik A.M. Mander U. Zhang L. Anderson C.J. Jorgensen S.E. Brix H. Wetlands, carbon, and climate change Landsc. Ecol. 2012 28 583 597 10.1007/s10980-012-9758-8
3. Shao X. Sheng X. Wu M. Wu H. Ning X. Methane production potential and emission at different water levels in the restored reed wetland of Hangzhou Bay PLoS ONE 2017 12 e0185709 10.1371/journal.pone.0185709 28968419
4. Kirschke S. Bousquet P. Ciais P. Saunois M. Canadell J.G. Dlugokencky E. Bergamaschi P. Bergmann D. Blake D.R. Bruhwiler L.M.P. Three decades of global methane sources and sinks Nat. Geosci. 2013 6 813 823 10.1038/ngeo1955
5. Bastviken D. Cole J. Pace M. Tranvik L. Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate Glob. Biogeochem. Cycles 2004 18 18 10.1029/2004GB002238
6. Conrad R. The global methane cycle: Recent advances in understanding the microbial processes involved Environ. Microbiol. Rep. 2009 1 285 292 10.1111/j.1758-2229.2009.00038.x 23765881
7. King G.M. Ecological aspects of methane oxidation, a key determinant of global methane dynamics Advances in Microbial Ecology Springer Berlin, Germany 1992 431 468
8. Chowdhury T.R. Dick R.P. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands Appl. Soil Ecol. 2013 65 8 22 10.1016/j.apsoil.2012.12.014
9. Stocker T.F. Qin D. Plattner G.-K. Tignor M. Allen S.K. Boschung J. Nauels A. Xia Y. Bex V. Midgley P.M. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change Evaluation of Climate Models Cambridge University Press Cambridge, UK 2013 1535
10. Dedysh S.N. Eknief C. Diversity and phylogeny of described aerobic methanotrophs Methane Biocatalysis: Paving the Way to Sustainability Springer Berlin, Germany 2018 17 42
11. Semrau J.D. DiSpirito A.A. Yoon S. Methanotrophs and copper FEMS Microbiol. Rev. 2010 34 496 531 10.1111/j.1574-6976.2010.00212.x 20236329
12. Hanson R.S. The obligate methanotrophic bacteria Merhvlococcus . Methylomonas , and Methylosinus The Procaryotes Springer Berlin, Germany 1992 2350 2364
13. Oremland R.S. Culbertson C.W. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor Nat. Cell Biol. 1992 356 421 423 10.1038/356421a0
14. Dalton H. Methane Oxidation by Methanotrophs Methane and Methanol Utilizers Springer Berlin, Germany 1992 85 114
15. Murrell J.C. Gilbert B. McDonald I.R. Molecular biology and regulation of methane monooxygenase Arch. Microbiol. 2000 173 325 332 10.1007/s002030000158 10896210
17. DeWitt J.G. Bentsen J.G. Rosenzweig A.C. Hedman B. Green J. Pilkington S. Papaefthymiou G.C. Dalton H. Hodgson K.O. Lippard S.J. X-ray absorption, Moessbauer, and EPR studies of the dinuclear iron center in the hydroxylase component of methane monooxygenase J. Am. Chem. Soc. 1991 113 9219 9235 10.1021/ja00024a031
18. Nguyen H.H. Shiemke A.K. Jacobs S.J. Hales B.J. Lidstrom M.E. Chan S.I. The nature of the copper ions in the membranes containing the particulate methane monooxygenase from Methylococcus capsulatus (Bath) J. Biol. Chem. 1994 269 14995 15005 8195135
19. Anthony C. Zatman L.J. The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: A new oxidoreductase prosthetic group Biochem. J. 1967 104 960 969 10.1042/bj1040960 6049934
20. Vorholt J.A. Chistoserdova L. Lidstrom M.E. Thauer R.K. The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1 J. Bacteriol. 1998 180 5351 5356 10.1128/JB.180.20.5351-5356.1998 9765566
21. Marx C.J. Chistoserdova L. Lidstrom M.E. Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM J. Bacteriol. 2003 185 7160 7168 10.1128/JB.185.23.7160-7168.2003 14645276
22. Chistoserdova L. VanWiggeren G.D. Roy R. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea Science 1998 281 99 102 10.1126/science.281.5373.99 9651254
23. Strong P.J. Xie S. Clarke W.P. Methane as a resource: Can the methanotrophs add value? Environ. Sci. Technol. 2015 49 4001 4018 10.1021/es504242n 25723373
24. Haynes C.A. Gonzalez R. Rethinking biological activation of methane and conversion to liquid fuels Nat. Chem. Biol. 2014 10 331 339 10.1038/nchembio.1509 24743257
25. Bordel S. Rojas A. Munoz R. Reconstruction of a genome scale metabolic model of the polyhydroxybutyrate producing methanotroph Methylocystis parvus OBBP Microb. Cell Factories 2019 18 1 11 10.1186/s12934-019-1154-5 31170985
26. Strong P.J. Laycock B. Mahamud S.N.S. Jensen P.D. Lant P.A. Tyson G.W. Pratt S. The opportunity for high-performance biomaterials from methane Microorganisms 2016 4 11 10.3390/microorganisms4010011
27. Kalyuzhnaya M.G. Yang S. Rozova O.N. Smalley N.E. Clubb J. Lamb A. Gowda G.A.N. Raftery D. Fu Y. Bringel F. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium Nat. Commun. 2013 4 1 7 10.1038/ncomms3785
28. Bowman J.P. Sly L.I. Nichols P.D. Hayward A.C. Revised taxonomy of the methanotrophs: Description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs Int. J. Syst. Bacteriol. 1993 43 735 753 10.1099/00207713-43-4-735
29. Whittenbury R. Davies S.L. Davey J.F. Exospores and cysts formed by methane-utilizing bacteria J. Gen. Microbiol. 1970 61 219 226 10.1099/00221287-61-2-219 5476892
30. Wartiainen I. Hestnes A.G. McDonald I.R. Svenning M.M. Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78° N) Int. J. Syst. Evol. Microbiol. 2006 56 541 547 10.1099/ijs.0.63912-0 16514024
31. Lindner A.S. Pacheco A. Aldrich H.C. Staniec A.C. Uz I. Hodson D.J. Methylocystis hirsuta sp. nov., a novel methanotroph isolated from a groundwater aquifer Int. J. Syst. Evol. Microbiol. 2007 57 1891 1900 10.1099/ijs.0.64541-0 17684277
32. Belova S.E. Kulichevskaya I.S. Bodelier P.L.E. Dedysh S.N. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al Int. J. Syst. Evol. Microbiol. 2013 63 1096 1104 10.1099/ijs.0.043505-0 22707532
33. Dedysh S.N. Belova S.E. Bodelier P.L.E. Smirnova K.V. Khmelenina V.N. Chidthaisong A. Trotsenko Y.A. Liesack W. Dunfield P.F. Methylocystis heyeri sp. nov., a novel type II methanotrophic bacterium possessing ‘signature’ fatty acids of type I methanotrophs Int. J. Syst. Evol. Microbiol. 2007 57 472 479 10.1099/ijs.0.64623-0 17329771
34. Dam B. Dam S. Blom J. Liesack W. Genome analysis coupled with physiological studies reveals a diverse nitrogen metabolism in Methylocystis sp. strain SC2 PLoS ONE 2013 8 e74767 10.1371/journal.pone.0074767 24130670
35. Stein L.Y. Bringel F. DiSpirito A.A. Han S. Jetten M.S.M. Kalyuzhnaya M.G. Kits K.D. Klotz M.G. Camp H.J.M.O.D. Semrau J.D. Genome sequence of the methanotrophic alphaproteobacterium Methylocystis sp. Strain Rockwell (ATCC 49242) J. Bacteriol. 2011 193 2668 2669 10.1128/JB.00278-11 21441518
36. Han D. Dedysh S.N. Liesack W. Unusual genomic traits suggest Methylocystis bryophila S285 to be well adapted for life in peatlands Genome Biol. Evol. 2018 10 623 628 10.1093/gbe/evy025 29390143
37. Nguyen N.-L. Yu W.-J. Gwak J.-H. Kim S.-J. Park S.-J. Herbold C.W. Kim J.-G. Jung M.-Y. Rhee S.-K. Genomic insights into the acid adaptation of novel methanotrophs enriched from acidic forest soils Front. Microbiol. 2018 9 1982 10.3389/fmicb.2018.01982 30210468
38. Vorobev A. Jagadevan S. Jain S. Anantharaman K. Dick G.J. Vuilleumier S. Semrau J.D. Genomic and Transcriptomic analyses of the facultative methanotroph Methylocystis sp. Strain SB2 grown on methane or ethanol Appl. Environ. Microbiol. 2014 80 3044 3052 10.1128/AEM.00218-14 24610846
39. Belova S.E. Baani M. Suzina N.E. Bodelier P.L. Liesack W. Dedysh S.N. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ. Microbiol. Rep. 2011 3 36 46 10.1111/j.1758-2229.2010.00180.x 23761229
40. Knief C. Dunfield P.F. Response and adaptation of different methanotrophic bacteria to low methane mixing ratios Environ. Microbiol. 2005 7 1307 1317 10.1111/j.1462-2920.2005.00814.x 16104854
42. Smith E.J. Davison W. Hamilton-Taylor J. Methods for preparing synthetic freshwaters Water Res. 2002 36 1286 1296 10.1016/S0043-1354(01)00341-4 11902783
43. Widdel F. Bak F. Gram-Negative Mesophilic sulfate-reducing bacteria The Prokaryotes Springer Berlin, Germany 1992 3352 3378
44. Whittenbury R. Phillips K.C. Wilkinson J.F. Enrichment, isolation and some properties of methane-utilizing bacteria J. Gen. Microbiol. 1970 61 205 218 10.1099/00221287-61-2-205 5476891
45. Kim S.-J. Park S.-J. Cha I.-T. Min D. Kim J.-S. Chung W.-H. Chae J.-C. Jeon C.O. Rhee S.-K. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis Environ. Microbiol. 2013 16 189 204 10.1111/1462-2920.12277 24118987
46. Jung M.-Y. Park S.-J. Min D. Kim J.-S. Rijpstra W.I.C. Damste J.S.S. Kim G.-J. Madsen E.L. Rhee S.-K. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil Appl. Environ. Microbiol. 2011 77 8635 8647 10.1128/AEM.05787-11 22003023
47. Holmes A.J. Costello A. Lidstrom M.E. Murrell J.C. Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related FEMS Microbiol. Lett. 1995 132 203 208 10.1111/j.1574-6968.1995.tb07834.x 7590173
48. Hakobyan A. Zhu J. Glatter T. Paczia N. Liesack W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs Metab. Eng. 2020 61 181 196 10.1016/j.ymben.2020.05.003 32479801
49. Lane D. 16S/23S rRNA sequencing Nucleic Acid Techniques in Bacterial Systematics Wiley Hoboken, NJ, USA 1991 115 175
50. Weisburg W.G. Barns S.M. Pelletier D.A. Lane D.J. 16S ribosomal DNA amplification for phylogenetic study J. Bacteriol. 1991 173 697 703 10.1128/JB.173.2.697-703.1991 1987160
51. Miguez C. Bourque D. Sealy J. Greer C. Groleau D. Detection and isolation of methanotrophic bacteria possessing soluble methane monooxygenase (sMMO) genes using the polymerase chain reaction (PCR) Microb. Ecol. 1997 33 21 31 10.1007/s002489900004 9039762
52. Hutchens E. Radajewski S. Dumont M.G. McDonald I.R. Murrell J.C. Analysis of methanotrophic bacteria in Movile Cave by stable isotope probing Environ. Microbiol. 2003 6 111 120 10.1046/j.1462-2920.2003.00543.x
53. Saitou N. Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees Mol. Biol. Evol. 1987 4 406 425 10.1093/oxfordjournals.molbev.a040454 3447015
54. Lewis P.O. Kumar S. Tamura K. Nei M. MEGA: Molecular evolutionary genetics analysis, Version 1.02 Syst. Biol. 1995 44 576 10.2307/2413665
55. Yoon S.-H. Ha S.-M. Kwon S. Lim J. Kim Y. Seo H. Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies Int. J. Syst. Evol. Microbiol. 2017 67 1613 1617 10.1099/ijsem.0.001755 28005526
56. Bankevich A. Nurk S. Antipov D. Gurevich A.A. Dvorkin M. Kulikov A.S. Lesin V.M. Nikolenko S.I. Pham S. Prjibelski A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing J. Comput. Biol. 2012 19 455 477 10.1089/cmb.2012.0021 22506599
57. Tatusova T. DiCuccio M. Badretdin A. Chetvernin V. Nawrocki E.P. Zaslavsky L. Lomsadze A. Pruitt K.D. Borodovsky M. Ostell J. NCBI prokaryotic genome annotation pipeline Nucleic Acids Res. 2016 44 6614 6624 10.1093/nar/gkw569 27342282
58. Camacho C. Coulouris G. Avagyan V. Ma N. Papadopoulos J.S. Bealer K. Madden T.L. BLAST+: Architecture and applications BMC Bioinform. 2009 10 421 10.1186/1471-2105-10-421
59. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs Nucleic Acids Res. 2016 45 D353 D361 10.1093/nar/gkw1092 27899662
60. Mistry J. Bateman A. Finn R.D. Predicting active site residue annotations in the Pfam database BMC Bioinform. 2007 8 1 14 10.1186/1471-2105-8-298
61. Lee I. Kim Y.O. Park S.-C. Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity Int. J. Syst. Evol. Microbiol. 2016 66 1100 1103 10.1099/ijsem.0.000760 26585518
62. Zhao Y. Wu J. Yang J. Sun S. Xiao J. Yu J. PGAP: Pan-genomes analysis pipeline Bioinformatics 2011 28 416 418 10.1093/bioinformatics/btr655 22130594
63. Eren A.M. Esen O.C. Quince C. Vineis J.H. Morrison H.G. Sogin M.L. Delmont T.O. Anvi’o: An advanced analysis and visualization platform for omics data PeerJ 2015 3 e1319 10.7717/peerj.1319 26500826
64. Alcock B.P. Raphenya A.R. Lau T.T.Y. Tsang K.K. Bouchard M. Edalatmand A. Huynh W. Nguyen A.-L.V. Cheng A.A. Liu S. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database Nucleic Acids Res. 2020 48 D517 D525 10.1093/nar/gkz935 31665441
66. Kwon J.-H. Han Y.-S. Cho Y.-C. Ahn J.-S. Yim G.-J. Water Quality and Methane emission characteristics of aerobic wetlands constructed in coal mine area J. Korean Soc. Miner. Energy Resour. Eng. 2018 55 371 382 10.32390/ksmer.2018.55.5.371
67. Im J. Lee S.-W. Yoon S. DiSpirito A.A. Semrau J.D. Characterization of a novel facultative Methylocystis species capable of growth on methane, acetate and ethanol Environ. Microbiol. Rep. 2010 3 174 181 10.1111/j.1758-2229.2010.00204.x 23761249
68. Reid R. Mosley L.M. Comparative contributions of solution geochemistry, microbial metabolism and aquatic photosynthesis to the development of high pH in ephemeral wetlands in South East Australia Sci. Total. Environ. 2016 542 334 343 10.1016/j.scitotenv.2015.10.040 26519593
69. Dianou D. Adachi K. Dianou D. Characterization of methanotrophic bacteria isolated from a subtropical paddy field FEMS Microbiol. Lett. 1999 173 163 173 10.1111/j.1574-6968.1999.tb13498.x
70. Hou C.T. Laskin A.I. Patel R.N. Growth and polysaccharide production by Methylocystis parvus OBBP on methanol Appl. Environ. Microbiol. 1979 37 800 804 10.1128/AEM.37.5.800-804.1979 16345377
71. Jo S.Y. Na Rhie M. Jung S.M. Sohn Y.J. Yeon Y.J. Kim M.-S. Park C. Lee J. Park S.J. Na J.-G. Hydrogen production from methane by Methylomonas sp. DH-1 under micro-aerobic conditions Biotechnol. Bioprocess Eng. 2020 25 71 77 10.1007/s12257-019-0256-6
72. Dam B. Kube M. Dam S. Reinhardt R. Liesack W. Complete sequence analysis of two methanotroph-specific repABC-containing plasmids from Methylocystis sp. strain SC2 Appl. Environ. Microbiol. 2012 78 4373 4379 10.1128/AEM.00628-12 22504811
73. Konstantinidis K.T. Tiedje J.M. Towards a genome-based taxonomy for prokaryotes J. Bacteriol. 2005 187 6258 6264 10.1128/JB.187.18.6258-6264.2005 16159757
74. Konstantinidis K.T. Ramette A.N. Tiedje J.M. The bacterial species definition in the genomic era Philos. Trans. R. Soc. B Biol. Sci. 2006 361 1929 1940 10.1098/rstb.2006.1920
75. Tatusov R.L. Koonin E.V. Lipman D.J. A Genomic perspective on protein families Science 1997 278 631 637 10.1126/science.278.5338.631 9381173
76. Oshkin I.Y. Miroshnikov K.K. Grouzdev D.S. Dedysh S.N. Pan-genome-based analysis as a framework for demarcating two closely related methanotroph genera Methylocystis and Methylosinus Microorganisms 2020 8 768 10.3390/microorganisms8050768
77. Stolyar S. Costello A.M. Peeples T.L. Lidstrom M.E. Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath Microbiology 1999 145 1235 1244 10.1099/13500872-145-5-1235 10376840
78. Matsen J.B. Yang S. Stein L.Y. Beck D.A. Kalyuzhanaya M.G. Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic study Front. Microbiol. 2013 4 40 10.3389/fmicb.2013.00040 23565111
79. Cai Y. Zheng Y. Bodelier P.L.E. Conrad R. Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils Nat. Commun. 2016 7 11728 10.1038/ncomms11728 27248847
80. Baani M. Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2 Proc. Natl. Acad. Sci. USA 2008 105 10203 10208 10.1073/pnas.0702643105 18632585
81. Dunfield P.F. Liesack W. Henckel T. Knowles R. Conrad R. High-affinity methane oxidation by a soil enrichment culture containing a type II methanotroph Appl. Environ. Microbiol. 1999 65 1009 1014 10.1128/AEM.65.3.1009-1014.1999 10049856
82. Anthony C. Ghosh M. Blake C.C.F. The structure and function of methanol dehydrogenase and related quinoproteins containing pyrrolo-quinoline quinone Biochem. J. 1994 304 665 674 10.1042/bj3040665 7818466
83. Anthony C. Williams P. The structure and mechanism of methanol dehydrogenase Biochim. Biophys. Acta (BBA) Proteins Proteom. 2003 1647 18 23 10.1016/S1570-9639(03)00042-6
84. Nakagawa T. Mitsui R. Tani A. Sasa K. Tashiro S. Iwama T. Hayakawa T. Kawai K. A Catalytic Role of XoxF1 as La 3+ -dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1 PLoS ONE 2012 7 e50480 10.1371/journal.pone.0050480 23209751
85. Keltjens J.T. Pol A. Reimann J. Camp H.J.M.O.D. PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference Appl. Microbiol. Biotechnol. 2014 98 6163 6183 10.1007/s00253-014-5766-8 24816778
86. Picone N. Camp H.J.M.O.D. Role of rare earth elements in methanol oxidation Curr. Opin. Chem. Biol. 2019 49 39 44 10.1016/j.cbpa.2018.09.019 30308436
87. Krause S.M.B. Johnson T. Karunaratne Y.S. Fu Y. Beck D.A.C. Chistoserdova L. Lidstrom M.E. Lanthanide-dependent cross-feeding of methane-derived carbon is linked by microbial community interactions Proc. Natl. Acad. Sci. USA 2016 114 358 363 10.1073/pnas.1619871114 28028242
88. Salisbury S.A. Forrest H.S. Cruse W.B.T. Kennard O. A novel coenzyme from bacterial primary alcohol dehydrogenases Nat. Cell Biol. 1979 280 843 844 10.1038/280843a0
89. Anthony C. The quinoprotein dehydrogenases for methanol and glucose Arch. Biochem. Biophys. 2004 428 2 9 10.1016/j.abb.2004.03.038 15234264
90. Murrell J.C. Dalton H. Nitrogen fixation in obligate methanotrophs Microbiology 1983 129 3481 3486 10.1099/00221287-129-11-3481
91. Auman A.J. Speake C.C. Lidstrom M.E. nifH Sequences and nitrogen fixation in type I and type II methanotrophs Appl. Environ. Microbiol. 2001 67 4009 4016 10.1128/AEM.67.9.4009-4016.2001 11525998
92. Dedysh S.N. Ricke P. Liesack W. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria Microbiology 2004 150 1301 1313 10.1099/mic.0.26585-0 15133093
94. Graf E.-G. Thauer R.K. Hydrogenase from methanobacterium thermoautotrophicum, a nickel-containing enzyme FEBS Lett. 1981 136 165 169 10.1016/0014-5793(81)81238-0
95. Thauer R.K. Klein A.A.R. Hartmann G.C. Reactions with molecular hydrogen in microorganisms: Evidence for a purely organic hydrogenation catalyst Chem. Rev. 1996 96 3031 3042 10.1021/cr9500601 11848851
96. Pavlov M. Siegbahn P.E.M. Blomberg M.R.A. Crabtree R.H. Mechanism of H?H activation by nickel?iron hydrogenase J. Am. Chem. Soc. 1998 120 548 555 10.1021/ja971681+
97. Greening C. Biswas A. Carere C.R. Jackson C.J. Taylor M.C. Stott M.B. Cook G.M. Morales S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H 2 is a widely utilised energy source for microbial growth and survival ISME J. 2015 10 761 777 10.1038/ismej.2015.153 26405831
98. Cal A.J. Sikkema W.D. Ponce M.I. Franqui-Villanueva D. Riiff T.J. Orts W.J. Pieja A.J. Lee C.C. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content Int. J. Biol. Macromol. 2016 87 302 307 10.1016/j.ijbiomac.2016.02.056 26920242
99. Khosravi-Darani K. Mokhtari Z.-B. Amai T. Tanaka K. Microbial production of poly(hydroxybutyrate) from C1 carbon sources Appl. Microbiol. Biotechnol. 2013 97 1407 1424 10.1007/s00253-012-4649-0 23306640
100. Byrom D.P. Plastics from Microbes: Microbial Synthesis of Polymers and Polymer Precursors Hanser Munich, Germany 1994 5
101. Braunegg G. Sonnleitner B. Lafferty R.M. A rapid gas chromatographic method for the determination of poly-?-hydroxybutyric acid in microbial biomass Appl. Microbiol. Biotechnol. 1978 6 29 37 10.1007/BF00500854
102. Gunes A. Pilbeam D.J. Inal A. Effect of arsenic?phosphorus interaction on arsenic-induced oxidative stress in chickpea plants Plant Soil 2008 314 211 220 10.1007/s11104-008-9719-9
103. Slyemi D. Bonnefoy V. How prokaryotes deal with arsenic† Environ. Microbiol. Rep. 2011 4 571 586 10.1111/j.1758-2229.2011.00300.x 23760928
104. Herath I. Vithanage M. Bundschuh J. Maity J.P. Bhattacharya P. Natural arsenic in global groundwaters: Distribution and geochemical triggers for mobilization Curr. Pollut. Rep. 2016 2 68 89 10.1007/s40726-016-0028-2
105. Patil Y.B. Paknikar K. Development of a process for biodetoxification of metal cyanides from waste waters Process. Biochem. 2000 35 1139 1151 10.1016/S0032-9592(00)00150-3
106. Gupta N. Balomajumder C. Agarwal V.K. Enzymatic mechanism and biochemistry for cyanide degradation: A review J. Hazard. Mater. 2010 176 1 13 10.1016/j.jhazmat.2009.11.038 20004515
107. Dash H.R. Das S. Bioremediation of mercury and the importance of bacterial mer genes Int. Biodeterior. Biodegrad. 2012 75 207 213 10.1016/j.ibiod.2012.07.023
108. Vorobev A. Jagadevan S. Baral B.S. DiSpirito A.A. Freemeier B.C. Bergman B.H. Bandow N.L. Semrau J.D. Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b Appl. Environ. Microbiol. 2013 79 5918 5926 10.1128/AEM.01673-13 23872554
109. Shi L.-D. Chen Y.-S. Du J.-J. Hu Y.-Q. Shapleigh J.P. Zhao H.-P. Metagenomic evidence for a Methylocystis species capable of bioremediation of diverse heavy metals Front. Microbiol. 2019 9 3297 10.3389/fmicb.2018.03297 30687279
110. Boden R. Murrell J.C. Response to mercury (II) ions in Methylococcus capsulatus (Bath) FEMS Microbiol. Lett. 2011 324 106 110 10.1111/j.1574-6968.2011.02395.x 22092810
111. Lu X. Gu W. Zhao L. Haque M.F.U. DiSpirito A.A. Semrau J.D. Gu B. Methylmercury uptake and degradation by methanotrophs Sci. Adv. 2017 3 e1700041 10.1126/sciadv.1700041 28580426
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.