$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Zebrafish Embryonic Exposure to BPAP and Its Relatively Weak Thyroid Hormone-Disrupting Effects 원문보기

Toxics, v.8 no.4, 2020년, pp.103 -   

Lee, Sangwoo (Biosystem Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea) ,  Eghan, Kojo (sangwoo.lee@kitox.re.kr (S.L.)) ,  Lee, Jieon (keghan@kitox.re.kr (K.E.)) ,  Yoo, Donggon (jieon.lee@kitox.re.kr (J.L.)) ,  Yoon, Seokjoo (donggon.yoo@kitox.re.kr (D.Y.)) ,  Kim, Woo-Keun (Biosystem Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea)

Abstract AI-Helper 아이콘AI-Helper

Safe endocrine-disrupting alternatives for bisphenol A (BPA) are needed because its adverse health effects have become a public concern. Some bisphenol analogues (bisphenol F and S) have been applied, but their endocrine-disrupting potential is either not negligible or weaker than that of BPA. Howev...

Keyword

참고문헌 (46)

  1. 1. Zhang D.H. Zhou E.X. Yang Z.L. Waterborne exposure to BPS causes thyroid endocrine disruption in zebrafish larvae PLoS ONE 2017 12 e0176927 10.1371/journal.pone.0176927 28467477 

  2. 2. Zhang Y.F. Ren X.M. Li Y.Y. Yao X.F. Li C.H. Qin Z.F. Guo L.H. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo Environ. Pollut. 2018 237 1072 1079 10.1016/j.envpol.2017.11.027 29146198 

  3. 3. Lee S. Kim C. Shin H. Kho Y. Choi K. Comparison of thyroid hormone disruption potentials by bisphenols A, S, F, and Z in embryo-larval zebrafish Chemosphere 2019 221 115 123 10.1016/j.chemosphere.2019.01.019 30639807 

  4. 4. Huang G.M. Tian X.F. Fang X.D. Ji F.J. Waterborne exposure to bisphenol F causes thyroid endocrine disruption in zebrafish larvae Chemosphere 2016 147 188 194 10.1016/j.chemosphere.2015.12.080 26766355 

  5. 5. Tang T. Yang Y. Chen Y. Tang W. Wang F. Diao X. Thyroid Disruption in Zebrafish Larvae by Short-Term Exposure to Bisphenol AF Int. J. Environ. Res. Public Health 2015 12 13069 13084 10.3390/ijerph121013069 26501309 

  6. 6. Zhang L. Fang P. Yang L. Zhang J. Wang X. Rapid method for the separation and recovery of endocrine-disrupting compound bisphenol AP from wastewater Langmuir 2013 29 3968 3975 10.1021/la304792m 23445219 

  7. 7. Xiao X. Li J. Yu T. Zhou L. Fan X. Xiao H. Wang Y. Yang L. Lv J. Jia X. Bisphenol AP is anti-estrogenic and may cause adverse effects at low doses relevant to human exposure Environ. Pollut. 2018 242 1625 1632 10.1016/j.envpol.2018.07.115 30077407 

  8. 8. Liao C. Kannan K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States Arch. Environ. Contam. Toxicol. 2014 67 50 59 10.1007/s00244-014-0016-8 24639116 

  9. 9. Liao C. Kannan K. A survey of bisphenol A and other bisphenol analogues in foodstuffs from nine cities in China Food Addit. Contam. Part A Chem. Anal. Control Expo Risk Assess. 2014 31 319 329 10.1080/19440049.2013.868611 24262000 

  10. 10. Asimakopoulos A.G. Xue J. De Carvalho B.P. Iyer A. Abualnaja K.O. Yaghmoor S.S. Kumosani T.A. Kannan K. Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia Environ. Res. 2016 150 573 581 10.1016/j.envres.2015.11.029 26654562 

  11. 11. Zhang T. Xue J. Gao C.Z. Qiu R.L. Li Y.X. Li X. Huang M.Z. Kannan K. Urinary Concentrations of bisphenols and their association with biomarkers of oxidative stress in people living near E-waste recycling facilities in China Environ. Sci. Technol. 2016 50 4045 4053 10.1021/acs.est.6b00032 26974222 

  12. 12. Chen Y. Fang J. Ren L. Fan R. Zhang J. Liu G. Zhou L. Chen D. Yu Y. Lu S. Urinary bisphenol analogues and triclosan in children from south China and implications for human exposure Environ. Pollut. 2018 238 299 305 10.1016/j.envpol.2018.03.031 29573712 

  13. 13. Yan Z. Liu Q. Yan K. Wu S. Han Z. Guo R. Chen M. Yang Q. Zhang S. Chen J. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk Chemosphere 2017 184 318 328 10.1016/j.chemosphere.2017.06.010 28601665 

  14. 14. Lee S. Liao C. Song G.J. Ra K. Kannan K. Moon H.B. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea Chemosphere 2015 119 1000 1006 10.1016/j.chemosphere.2014.09.011 25303660 

  15. 15. Lee S. Kim C. Youn H. Choi K. Thyroid hormone disrupting potentials of bisphenol A and its analogues―In vitro comparison study employing rat pituitary (GH3) and thyroid follicular (FRTL-5) cells Toxicol. In Vitro 2017 40 297 304 10.1016/j.tiv.2017.02.004 28167136 

  16. 16. Lee J. Kim S. Choi K. Ji K. Effects of bisphenol analogs on thyroid endocrine system and possible interaction with 17beta-estradiol using GH3 cells Toxicol. In Vitro 2018 53 107 113 10.1016/j.tiv.2018.08.005 30099086 

  17. 17. European Parliament and the Council of the European Union Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes Off. J. Eur. Union 2010 53 33 79 

  18. 18. Elsalini O.S. Gartzen J. Cramer M. Rohr K.B. Zebrafish hhex, nk2.1a, and pax2.1 regulate thyroid growth and differentiation downstream of Nodel-dependent transcription factors Dev. Biol. 2003 263 67 80 10.1016/S0012-1606(03)00436-6 14568547 

  19. 19. Spaan K. Haigis A.C. Weiss J. Legradi J. Effects of 25 thyroid hormone disruptors on zebrafish embryos: A literature review of potential biomarkers Sci. Total Environ. 2019 656 1238 1249 10.1016/j.scitotenv.2018.11.071 30625654 

  20. 20. Optiz R. Antonica F. Costagliola S. New model system to illuminate thyroid organogenesis. Part I: An update on the zebrafish toolbox Eur. Thyroid J. 2013 2 229 242 10.1159/000357079 24783054 

  21. 21. Percie du Sert N. Ahluwalia A. Alam S. Avey M.T. Baker M. Browne W.J. Clark A. Cuthill I.C. Dirnagl U. Emerson M. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0 PLoS Biol. 2020 18 e3000411 10.1371/journal.pbio.3000411 32663221 

  22. 22. Yu L. Deng J. Shi X. Liu C. Yu K. Zhou B. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae Aquat. Toxicol. 2010 97 226 233 10.1016/j.aquatox.2009.10.022 19945756 

  23. 23. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method Methods 2001 25 402 408 10.1006/meth.2001.1262 11846609 

  24. 24. McCurley A.T. Callard G.V. Characterization of housekeeping genes in zebrafish: Male-female differences and effects of tissue type, developmental stage and chemical treatment BMC Mol. Biol. 2008 9 102 10.1186/1471-2199-9-102 19014500 

  25. 25. Lee S. Chun H.S. Lee J. Park H.J. Kim K.T. Kim C.H. Yoon S. Kim W.K. Plausibility of the zebrafish embryos/larvae as an alternative animal model for autism: A comparison study of transcriptome changes PLoS ONE 2018 13 e0203543 10.1371/journal.pone.0203543 30180205 

  26. 26. Dong X. Qiu X. Meng S. Xu H. Wu X. Yang M. Proteomic profile and toxicity pathway analysis in zebrafish embryos exposed to bisphenol A and di-n-butyl phthalate at environmentally relevant levels Chemosphere 2018 193 313 320 10.1016/j.chemosphere.2017.11.042 29145093 

  27. 27. Steele W.B. Mole R.A. Brooks B.W. Experimental Protocol for Examining Behavioral Response Profiles in Larval Fish: Application to the Neuro-stimulant Caffeine JoVE J. Vis. Exp. 2018 e57938 10.3791/57938 

  28. 28. Kim W.K. Lee S.K. Choi K. Jung J. Integrative assessment of biomarker responses in pale chub ( Zacco platypus ) exposed to copper and benzo[a]pyrene Ecotoxicol. Environ. Saf. 2013 92 71 78 10.1016/j.ecoenv.2013.02.010 23478165 

  29. 29. Yu L.Q. Zhao G.F. Feng M. Wen W. Li K. Zhang P.W. Peng X. Huo W.J. Zhou H.D. Chronic exposure to pentachlorophenol alters thyroid hormones and thyroid hormone pathway mRNAs in zebrafish Environ. Toxicol. Chem. 2014 33 170 176 10.1002/etc.2408 24123209 

  30. 30. Boas M. Feldt-Rasmussen U. Main K.M. Thyroid effects of endocrine disrupting chemicals Mol. Cell. Endocrinol. 2012 355 240 248 10.1016/j.mce.2011.09.005 21939731 

  31. 31. Chen R. Yuan L. Zha J. Wang Z. Developmental toxicity and thyroid hormone-disrupting effects of 2,4-dichloro-6-nitrophenol in Chinese rare minnow ( Gobiocypris rarus ) Aquat. Toxicol. 2017 185 40 47 10.1016/j.aquatox.2017.02.005 28187359 

  32. 32. Guo Y. Zhou B. Thyroid endocrine system disruption by pentachlorophenol: An in vitro and in vivo assay Aquat. Toxicol. 2013 142?143 138 145 10.1016/j.aquatox.2013.08.005 24001430 

  33. 33. Wang Q. Liang K. Liu J. Yang L. Guo Y. Liu C. Zhou B. Exposure of zebrafish embryos/larvae to TDCPP alters concentrations of thyroid hormones and transcriptions of genes involved in the hypothalamic-pituitary-thyroid axis Aquat. Toxicol. 2013 126 207 213 10.1016/j.aquatox.2012.11.009 23220413 

  34. 34. Sun H.J. Li H.B. Xiang P. Zhang X. Ma L.Q. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish Environ. Pollut. 2015 205 145 152 10.1016/j.envpol.2015.05.037 26057477 

  35. 35. Zoeller R.T. Tan S.W. Tyl R.W. General background on the hypothalamic-pituitary-thyroid (HPT) axis Crit. Rev. Toxicol. 2007 37 11 53 10.1080/10408440601123446 17364704 

  36. 36. Ortiga-Carvalho T.M. Sidhaye A.R. Wondisford F.E. Thyroid hormone receptors and resistance to thyroid hormone disorders Nat. Rev. Endocrinol. 2014 10 582 591 10.1038/nrendo.2014.143 25135573 

  37. 37. Chen Q. Yu L. Yang L. Zhou B. Bioconcentration and metabolism of decabromodiphenyl ether (BDE-209) result in thyroid endocrine disruption in zebrafish larvae Aquat. Toxicol. 2012 110?111 141 148 10.1016/j.aquatox.2012.01.008 

  38. 38. Crump D. Jagla M.M. Kehoe A. Kennedy S.W. Detection of Polybrominated Diphenyl Ethers in Herring Gull ( Larus argentatus ) brains: Effects on mRNA Expression in Cultured Neuronal Cells Environ. Sci. Technol. 2008 42 7715 7721 10.1021/es801145j 18983098 

  39. 39. Iglesias P. Diez J.J. Thyroid dysfunction and kidney disease Eur. J. Endocrinol. 2009 160 503 515 10.1530/EJE-08-0837 19095779 

  40. 40. Schairer B. Jungreithmayr V. Schuster M. Reiter T. Herkner H. Gessl A. Sengolge G. Winnicki W. Effect of Thyroid Hormones on Kidney Function in Patients after Kidney Transplantation Sci. Rep. 2020 10 2156 10.1038/s41598-020-59178-x 32034263 

  41. 41. Grais I.M. Sowers J.R. Thyroid and the Heart Am. J. Med. 2014 127 691 698 10.1016/j.amjmed.2014.03.009 24662620 

  42. 42. Chi H.C. Chen C.Y. Tsai M.M. Tsai C.Y. Lin K.H. Molecular functions of thyroid hormones and their clinical significance in liver-related diseases BioMed Res. Int. 2013 2013 601361 10.1155/2013/601361 23878812 

  43. 43. Sinha R.A. Singh B.K. Yen P.M. Direct effects of thyroid hormones on hepatic lipid metabolism Nat. Rev. Endocrinol. 2018 14 259 269 10.1038/nrendo.2018.10 29472712 

  44. 44. Chou C.-T. Hsiao Y.-C. Ko F.-C. Cheng J.-O. Cheng Y.-M. Chen T.-H. Chronic exposure of 2,2′,4,4′-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish ( Danio rerio ) Aquat. Toxicol. 2010 98 388 395 10.1016/j.aquatox.2010.03.012 20416957 

  45. 45. Lee S. Liu X. Takeda S. Choi K. Genotoxic potentials and related mechanisms of bisphenol A and other bisphenol compounds: A comparison study employing chicken DT40 cells Chemosphere 2013 93 434 440 10.1016/j.chemosphere.2013.05.029 23791112 

  46. 46. Mesnage R. Phedonos A. Arno M. Balu S. Corton J.C. Antoniou M.N. Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells Toxicol. Sci. 2017 158 431 443 10.1093/toxsci/kfx101 28591870 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로