최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal of molecular sciences, v.21 no.22, 2020년, pp.8465 -
Kong, In Chul (Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea) , Ko, Kyung-Seok (ickong@ynu.ac.kr) , Koh, Dong-Chan (Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea)
Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in e...
1. Lowry G.V. Gregory K.B. Apte S.C. Lead J.R. Transformations of nanomaterials in the environment Environ. Sci. Technol. 2012 46 6893 6899 10.1021/es300839e 22582927
2. Thuesombat P. Hannongbua S. Akasit S. Chadchawan S. Effect of silver nanoparticles on rice ( Oryza sativa L. cv. KDML 105 ) seed germination and seedling growth Ecotoxicol. Environ. Saf. 2014 104 302 309 10.1016/j.ecoenv.2014.03.022 24726943
3. El-Temsah Y.S. Joner E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in biovailability during exposure in aqueous suspension and soil Environ. Toxicol. 2012 27 42 49 10.1002/tox.20610 20549639
4. Cho Y.-M. Mizuta Y. Akagi J. Toyoda T. Sone M. Ogawa K. Size-dependent acute toxicity of silver nanoparticles in mice J. Toxicol. Pathol. 2018 31 73 80 10.1293/tox.2017-0043 29479144
5. Lekamge S. Miranda A.F. Abraham A. Li V. Shukla R. Bansal V. Nugegoda D. The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata , and Paratya australiensis Front. Environ. Sci. 2018 6 1 11 10.3389/fenvs.2018.00152
6. Li X. Fang J. Cheng H. Toxicity of silver nanoparticles to green algae M.aeruginosa and alleviation by organic matter Environ. Monit. Assess. 2018 190 667 30349996
7. Marambio-Jones C. Hoek E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment J. Nanopart. Res. 2010 12 1531 1551 10.1007/s11051-010-9900-y
8. Yan A. Chen Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism Int. J. Mol. Sci. 2019 20 1003 10.3390/ijms20051003
9. Fabrega J. Luoma S.N. Tyler C.R. Galloway T.S. Lead J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment Environ Internat. 2011 37 517 531 10.1016/j.envint.2010.10.012
10. Hoque M.E. Khosravi K. Newman K. Metcalfe C.D. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry J. Chromatogr. A 2012 1233 109 115 10.1016/j.chroma.2012.02.011 22381889
11. Moreno-Garrido I. Perez S. Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae Mar. Environ. Res. 2015 111 60 73 10.1016/j.marenvres.2015.05.008 26002248
12. Stampoulis D. Sinha S.K. White J.C. Assay-dependent phytoxicity of nanoparticles to plants Environ. Sci. Technol. 2009 43 9473 9479 10.1021/es901695c 19924897
13. Nakanishi W. Minami K. Shrestha L.K. Ji Q. Hill J.P. Ariga K. Bioactive nanocarbon assemblies: Nanoarchitectonics and applications Nano Today 2014 9 378 394 10.1016/j.nantod.2014.05.002
14. McGillicuddy E. Murray I. Kavanagh S. Morrisond L. Fogarty A. Cormican M. Dockeryf P. Prendergast M. Rowanc N. Morris D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology Sci. Total Environ. 2017 575 231 246 10.1016/j.scitotenv.2016.10.041 27744152
15. Ferdous Z. Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure Int. J. Mol. Sci. 2020 21 2375 10.3390/ijms21072375
16. Jing J. Long Z. Lin D. Toxicity of oxide nanoparticles to the green algae Chlorella sp Chem. Eng. J. 2010 170 525 530
17. He X. Aker W.G. Fu P.P. Hwang H.-M. Toxicity of engineered metal oxide nanomaterials mediated by nano-bio-eco-interactions: A review and perspective Environ. Sci. Nano 2015 2 564 582 10.1039/C5EN00094G
18. Mudunkotuwa I.A. Grassian V.H. Biological and environmental media control oxide nanoparticle surface composition: The roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid Environ. Sci. Nano 2015 2 429 439 10.1039/C4EN00215F
19. Akter M. Sikder M.R. Rahman M.M. Ullah A.K.M.A. Hossain K.F.B. Banik S. Hosokawa T. Saito T. Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives J. Adv. Res. 2018 9 1 16 10.1016/j.jare.2017.10.008 30046482
20. Lok C.-N. Ho C.-M. Chen R. He Q.-Y. Yu W.-Y. Sun H. Tam P.K.-H. Chiu J.-F. Che C.-M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles J. Proteome Res. 2006 5 916 924 10.1021/pr0504079 16602699
21. Pal S. Tak Y.K. Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli Appl. Environ. Microbiol. 2007 73 1712 1720 10.1128/AEM.02218-06 17261510
22. Nam S.H. An Y.J. Size- and shape-dependent toxicity of silver nanomaterials in green alga Chlorococcum infusionum Ecotoxicol. Environ. Saf. 2019 168 388 393 10.1016/j.ecoenv.2018.10.082 30396135
23. Zhao C.M. Wang W.X. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna Nanotoxicology 2012 6 361 370 10.3109/17435390.2011.579632 21591875
24. AshaRani P.V. Mun G.L.K. Hande M.P. Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in zebrafish models ACS Nano 2009 3 279 290 10.1021/nn800596w 19236062
26. Monikh F.A. Arenas-Lago D. Porcal P. Grillo R. Zhang P. Guo Z. Vijver M.G. Peijnenburg W.J.G.M. Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae? Nanotoxicology 2020 14 310 325 10.1080/17435390.2019.1692381 31775550
27. Ponti J. Sabbioni E. Munaro B. Broggi F. Marmorato P. Franchini F. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: An in vitro study in Balb/3T3 mouse fibroblasts Mutagenesis 2009 23 439 445 10.1093/mutage/gep027
28. Ghio A.J. Carraway M.S. Madden M.C. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems J. Toxicol. Environ. Health B Crit. Rev. 2012 15 1 21 10.1080/10937404.2012.632359 22202227
29. Chattopadhyay S. Dash S.K. Tripathy S. Das B. Mandal D. Pramanik P. Roy S. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study Chemico-Biolog. Interact. 2015 226 58 71 10.1016/j.cbi.2014.11.016
30. Klaine S.J. Alvarez P.J.J. Batley G.E. Fernandes T.F. Handy R.D. Lyon D.Y. Mahendra S. McLaughlin M.J. Lead J.R. Nanomaterials in the environment: Behavior, fate, bioavailability and effects Environ. Toxicol. Chem. 2008 27 1825 1851 10.1897/08-090.1 19086204
31. Shin Y.-J. Kwak J.I. An Y.-J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes Chemosphere 2012 88 524 529 10.1016/j.chemosphere.2012.03.010 22513336
32. Gomes S.I.L. Soares A.M.V.M. Scott-Fordsmand J.J. Amorim M.J.B. Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta) Survival, reproduction and gene expression profile J. Hazard. Mater. 2013 254?255 336 344 10.1016/j.jhazmat.2013.04.005 23644687
33. Waalewijn-Kool P.L. Klein K. Fornis R.M. van Gestel C.A.M. Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida Ecotoxicology 2014 23 1629 1637 10.1007/s10646-014-1302-y 25139028
34. Tourinho P.S. van Gestel C.A.M. Jurkschat K. Soares A.M.V.M. Loureiro S. Effects of soil and dietary exposures to Ag nanoparticles and AgNO 3 in the terrestrial isopod Porcellionides pruinosus Environ. Pollut. 2015 205 170 177 10.1016/j.envpol.2015.05.044 26071943
35. Abd-Alla M.H. Nafady N.A. Khalaf D.M. Assessment of silver nanoparticles contamination on faba bean- Rhizobium leguminosarum bv. viciae - Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule Agr. Ecosyst. Environ. 2016 218 163 177 10.1016/j.agee.2015.11.022
36. Hossain Z. Mustafa G. Sakata K. Komatsu S. Insights into the proteomic response of soybean towards Al 2 O 3 , ZnO, and Ag nanoparticles stress J. Hazard. Mater. 2016 304 291 305 10.1016/j.jhazmat.2015.10.071 26561753
37. Bossi E. Zanella D. Gornati R. Nernardini G. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes Sci. Rep. 2016 6 22254 10.1038/srep22254 26924527
38. Wang P. Lombi E. Zhao F.-J. Kopittke P.M. Nanotechnology: A new opportunity in plant sciences Trends Plant Sci. 2016 21 699 712 10.1016/j.tplants.2016.04.005 27130471
39. Abudayyak M. Gurkaynak T.A. Ozhan G. In vitro evaluation of cobalt oxide nanoparticle-induced toxicity Toxicol. Indust. Health 2017 33 646 654 10.1177/0748233717706633
40. Serpone N. Dondi D. Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare product Inorgan. Chim. Acta 2007 360 794 802 10.1016/j.ica.2005.12.057
41. Heinlaan M. Ivask A. Blinova I. Dubourguier H.C. Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus Chemosphere 2008 71 1308 1316 10.1016/j.chemosphere.2007.11.047 18194809
42. Aruoja V. Dubourguier H.C. Kasemets K. Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO 2 to microalgae Pseudokirchneriella subcapitata Sci. Tot. Environ. 2009 407 1461 1468 10.1016/j.scitotenv.2008.10.053 19038417
43. You J. Zhang Y. Hu Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles Colloids Surf. Biointerfaces 2011 85 161 167 10.1016/j.colsurfb.2011.02.023 21398101
44. Greulich C. Braun D. Peetsch A. Diendorf J. Siebers B. Epple M. Koller M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range RSC Adv. 2012 2 6981 6987 10.1039/c2ra20684f
45. Franci G. Falanga A. Galdiero S. Palomba L. Rai M. Morelli G. Galdiero M. Silver nanoparticles as potential antibacterial agents Molecules 2015 20 8856 8874 10.3390/molecules20058856 25993417
46. Krishnaraj C. Harper S.L. Yun S.-I. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish ( Danio rerio ) J. Hazard. Mater. 2016 301 480 491 10.1016/j.jhazmat.2015.09.022 26414925
47. Kwak J.I. An Y.-J. Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails ( Collembola ) J. Hazard. Mater. 2016 315 110 116 10.1016/j.jhazmat.2016.05.005 27187058
48. Di Salvatore M. Carafa A.M. Carrtu G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates Chemosphere 2008 73 1461 1464 10.1016/j.chemosphere.2008.07.061 18768198
49. Tripathi D.K. Tripathi A. Singh S. Singh Y. Vishwakarma K. Yadav G. Sharma S. Singh V.K. Mishra R.K. Upadhyay R.G. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review Front. Microbiol. 2017 8 7 10.3389/fmicb.2017.00007
50. Oukarroum A. Bras S. Perreault F. Popovic R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta Ecotoxicol. Environ. Saf. 2012 78 80 85 10.1016/j.ecoenv.2011.11.012 22138148
51. Kim S.W. Baek Y.-W. An Y.-J. Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis Appl. Microbiol. Biotechnol. 2011 92 1045 1052 10.1007/s00253-011-3611-x 21986863
52. Petersen E.J. Pinto R.A. Landrum P.F. Weber W.J. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms Environ. Sci. Technol. 2009 43 4181 4187 10.1021/es803023a 19569349
53. Vazquez-Munoz R. Borrego B. Juarez-Moreno K. Garcia-Garcia M. Mota Morales J.D. Bogdanchikova N. Huerta-Saquero A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological system matter? Toxicol. Lett. 2017 276 11 20 10.1016/j.toxlet.2017.05.007 28483428
54. Shukhnova A. Bozrova S. Sokolov P. Berestovoy M. Karaulov A. Nabiev L. Dependence of nanoparticle toxicity on their physical and chemical properties Nanoscale Res. Lett. 2018 13 44 10.1186/s11671-018-2457-x 29417375
55. Zoroddu M.A. Medici S. Ledda A. Nurchi V.M. Lachowicz J.I. Peana M. Toxicity of nanoparticles Curr. Med. Chem. 2014 21 3837 3853 10.2174/0929867321666140601162314 25306903
56. Tanvir F. Yaqub A. Tanvir S. Anderson W.A. Poly-L-arginine coated silver nanoprisms and their anti-bacterial properties Nanomaterials 2017 7 296 10.3390/nano7100296
57. Lopez-Heras M. Theodorou I.G. Leo B.F. Ryan M.P. Porter A.E. Towards understanding the antibacterial activity of Ag nanoparticles: Electron microscopy in the analysis of the materials-biology interface in the lung Environ. Sci. Nano 2015 2 312 326 10.1039/C5EN00051C
58. Zhu X. Zhu L. Duan Z. Qi R. Li Y. Lang Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish ( Danio rerio ) early developmental stage J. Environ. Sci. Health A 2008 43 278 284 10.1080/10934520701792779
59. Al-Bairuty G.A. Boyle D. Henry T.B. Handy R.D. Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout ( Oncorhynchus mykiss ) at low pH: Physiology and metal accumulation Aquat. Toxicol. 2016 174 188 198 10.1016/j.aquatox.2016.02.006 26966873
60. Razmara P. Lari E. Mohaddes E. Zhang Y.G. Goss G. Pyle G.G. The effect of copper nanoparticles on olfaction in rainbow trout ( Oncorhynchus mykiss ) Environ. Sci. Nano 2019 6 2094 2104 10.1039/C9EN00360F
61. Huang J. Cheng J. Yi J. Impact of silver nanoparticles on marine diatom Skeletonema costatum J. Appl. Toxicol. 2016 36 1343 1354 10.1002/jat.3325 27080522
62. Navarro E. Piccapietra F. Wagner B. Marconi F. Kaegi R. Odzak N. Sigg L. Behra R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii Environ. Sci. Technol. 2008 42 8959 8964 10.1021/es801785m 19192825
63. Dash A. Singh A.P. Chaudhary B.R. Singh S.K. Dash D. Effect of silver nanoparticles on growth of eukaryotic green algae Nano-Micro Lett. 2012 4 158 165 10.1007/BF03353707
64. Zhang L. Goswami N. Xie J. Zhang B. He Y. Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus Sci. Rep. 2017 7 16432 10.1038/s41598-017-16634-5 29180714
65. Handy R.D. Cornelis G. Fernandes T. Tsyusko O. Decho A. Sabo-Attwood T. Metcalfe C. Steevens J.A. Klaine S.J. Koelmans A.A. Ecotoxicity test methods for engineered nanomaterials: Practical experiences and recommendations from the bench Environ. Toxicol. Chem. 2012 31 15 31 10.1002/etc.706 22002667
66. Perreult F. Bogsan N. Morin M. Claverie J. Popovic R. Interaction of gold nanoplycodendrimers with algal cells ( Chlamydomonas reinhardtii ) and their effect on physiological processes Nanotoxicology 2011 6 109 120 10.3109/17435390.2011.562325 21417801
67. Pikula K. Mintcheva N. Kulinich S.A. Zakharenko A. Markina Z. Chaika V. Orlova T. Mezhuev Y. Kokkinakis E. Tsatsakis A. Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species Environ. Res. 2020 186 109513 10.1016/j.envres.2020.109513 32305679
68. Geisler-Lee J. Wang Q. Yao Y. Zhang W. Geisler M. Li K. Huang Y. Chen Y. Kolmakov A. Ma X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana Nanotoxicology 2013 7 323 337 10.3109/17435390.2012.658094 22263604
69. Wang J. Koo Y. Alexander A. Yang Y. Westerhof S. Zhang Q. Schnoor J.L. Colvin V.L. Braam J. Alvarez P.J.J. Phytostimulation of Poplars and Arabidopsis exposed to silver nanoparticles and Ag + at sublethal concentrations Environ. Sci. Technol. 2013 47 5442 5449 10.1021/es4004334 23631766
70. Papis E. Rossi F. Raspanti M. Dalle-Donne I. Colombo G. Milzani A. Bernardini G. Gornati R. Engineered cobalt oxide nanoparticles readily enter cells Toxicol. Lett. 2009 189 253 259 10.1016/j.toxlet.2009.06.851 19539014
71. Lee W.-M. An Y.-J. Yoon H.K. Kweon H.-S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean ( Phaseolus radiates ) and wheat ( Triticum aestivum ): Plant agar test for water-insoluble nanoparticles Environ. Toxicol. Chem. 2008 27 103 112 10.1897/07-481.1 18092874
72. Lu B. Smith T. Schmid J.J. Nanoparticle-lipid bilayer interactions studies with lipid bilayer arrays Nanoscale 2015 7 7858 7866 10.1039/C4NR06892K 25853986
74. Rahman A. Kumar S. Bafana A. Dahoumane S.A. Jeffryes C. Biosynthetic conversion Ag + to highly stable Ag 0 nanoparticles by wild type and cell wall deficient strains of Chlamydomonas reinhardtii Molecules 2019 24 98 10.3390/molecules24010098 30597856
75. Kong I.C. Ko K.S. Koh D.-C. Chon C.-M. Comparative effects of particle sizes of cobalt nanoparticles to nine biological activities Int. J. Mol. Sci. 2020 21 6767 10.3390/ijms21186767
76. Ko K.S. Kong I.C. Influence of incubation conditions on the nanoparticles toxicity based on seed germination and bacterial bioluminescence J. Nanosci. Nanotechnol. 2017 17 2382 2389 10.1166/jnn.2017.13098 29648419
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.