$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Evaluation of the Effects of Particle Sizes of Silver Nanoparticles on Various Biological Systems 원문보기

International journal of molecular sciences, v.21 no.22, 2020년, pp.8465 -   

Kong, In Chul (Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea) ,  Ko, Kyung-Seok (ickong@ynu.ac.kr) ,  Koh, Dong-Chan (Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea)

Abstract AI-Helper 아이콘AI-Helper

Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in e...

Keyword

참고문헌 (76)

  1. 1. Lowry G.V. Gregory K.B. Apte S.C. Lead J.R. Transformations of nanomaterials in the environment Environ. Sci. Technol. 2012 46 6893 6899 10.1021/es300839e 22582927 

  2. 2. Thuesombat P. Hannongbua S. Akasit S. Chadchawan S. Effect of silver nanoparticles on rice ( Oryza sativa L. cv. KDML 105 ) seed germination and seedling growth Ecotoxicol. Environ. Saf. 2014 104 302 309 10.1016/j.ecoenv.2014.03.022 24726943 

  3. 3. El-Temsah Y.S. Joner E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in biovailability during exposure in aqueous suspension and soil Environ. Toxicol. 2012 27 42 49 10.1002/tox.20610 20549639 

  4. 4. Cho Y.-M. Mizuta Y. Akagi J. Toyoda T. Sone M. Ogawa K. Size-dependent acute toxicity of silver nanoparticles in mice J. Toxicol. Pathol. 2018 31 73 80 10.1293/tox.2017-0043 29479144 

  5. 5. Lekamge S. Miranda A.F. Abraham A. Li V. Shukla R. Bansal V. Nugegoda D. The toxicity of silver nanoparticles (AgNPs) to three freshwater invertebrates with different life strategies: Hydra vulgaris, Daphnia carinata , and Paratya australiensis Front. Environ. Sci. 2018 6 1 11 10.3389/fenvs.2018.00152 

  6. 6. Li X. Fang J. Cheng H. Toxicity of silver nanoparticles to green algae M.aeruginosa and alleviation by organic matter Environ. Monit. Assess. 2018 190 667 30349996 

  7. 7. Marambio-Jones C. Hoek E.M.V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment J. Nanopart. Res. 2010 12 1531 1551 10.1007/s11051-010-9900-y 

  8. 8. Yan A. Chen Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism Int. J. Mol. Sci. 2019 20 1003 10.3390/ijms20051003 

  9. 9. Fabrega J. Luoma S.N. Tyler C.R. Galloway T.S. Lead J.R. Silver nanoparticles: Behaviour and effects in the aquatic environment Environ Internat. 2011 37 517 531 10.1016/j.envint.2010.10.012 

  10. 10. Hoque M.E. Khosravi K. Newman K. Metcalfe C.D. Detection and characterization of silver nanoparticles in aqueous matrices using asymmetric-flow field flow fractionation with inductively coupled plasma mass spectrometry J. Chromatogr. A 2012 1233 109 115 10.1016/j.chroma.2012.02.011 22381889 

  11. 11. Moreno-Garrido I. Perez S. Blasco J. Toxicity of silver and gold nanoparticles on marine microalgae Mar. Environ. Res. 2015 111 60 73 10.1016/j.marenvres.2015.05.008 26002248 

  12. 12. Stampoulis D. Sinha S.K. White J.C. Assay-dependent phytoxicity of nanoparticles to plants Environ. Sci. Technol. 2009 43 9473 9479 10.1021/es901695c 19924897 

  13. 13. Nakanishi W. Minami K. Shrestha L.K. Ji Q. Hill J.P. Ariga K. Bioactive nanocarbon assemblies: Nanoarchitectonics and applications Nano Today 2014 9 378 394 10.1016/j.nantod.2014.05.002 

  14. 14. McGillicuddy E. Murray I. Kavanagh S. Morrisond L. Fogarty A. Cormican M. Dockeryf P. Prendergast M. Rowanc N. Morris D. Silver nanoparticles in the environment: Sources, detection and ecotoxicology Sci. Total Environ. 2017 575 231 246 10.1016/j.scitotenv.2016.10.041 27744152 

  15. 15. Ferdous Z. Nemmar A. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure Int. J. Mol. Sci. 2020 21 2375 10.3390/ijms21072375 

  16. 16. Jing J. Long Z. Lin D. Toxicity of oxide nanoparticles to the green algae Chlorella sp Chem. Eng. J. 2010 170 525 530 

  17. 17. He X. Aker W.G. Fu P.P. Hwang H.-M. Toxicity of engineered metal oxide nanomaterials mediated by nano-bio-eco-interactions: A review and perspective Environ. Sci. Nano 2015 2 564 582 10.1039/C5EN00094G 

  18. 18. Mudunkotuwa I.A. Grassian V.H. Biological and environmental media control oxide nanoparticle surface composition: The roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid Environ. Sci. Nano 2015 2 429 439 10.1039/C4EN00215F 

  19. 19. Akter M. Sikder M.R. Rahman M.M. Ullah A.K.M.A. Hossain K.F.B. Banik S. Hosokawa T. Saito T. Kurasaki M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives J. Adv. Res. 2018 9 1 16 10.1016/j.jare.2017.10.008 30046482 

  20. 20. Lok C.-N. Ho C.-M. Chen R. He Q.-Y. Yu W.-Y. Sun H. Tam P.K.-H. Chiu J.-F. Che C.-M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles J. Proteome Res. 2006 5 916 924 10.1021/pr0504079 16602699 

  21. 21. Pal S. Tak Y.K. Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli Appl. Environ. Microbiol. 2007 73 1712 1720 10.1128/AEM.02218-06 17261510 

  22. 22. Nam S.H. An Y.J. Size- and shape-dependent toxicity of silver nanomaterials in green alga Chlorococcum infusionum Ecotoxicol. Environ. Saf. 2019 168 388 393 10.1016/j.ecoenv.2018.10.082 30396135 

  23. 23. Zhao C.M. Wang W.X. Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna Nanotoxicology 2012 6 361 370 10.3109/17435390.2011.579632 21591875 

  24. 24. AshaRani P.V. Mun G.L.K. Hande M.P. Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in zebrafish models ACS Nano 2009 3 279 290 10.1021/nn800596w 19236062 

  25. 25. Kim J.S. Sung J.H. Ji J.H. Song K.S. Lee J.H. Kang C.S. Yu I.J. In vivo genotoxicity of silver nanoparticles after 90-day silver nanoparticle inhalation exposure Saf. Health Work 2011 2 34 38 10.5491/SHAW.2011.2.1.34 22953185 

  26. 26. Monikh F.A. Arenas-Lago D. Porcal P. Grillo R. Zhang P. Guo Z. Vijver M.G. Peijnenburg W.J.G.M. Do the joint effects of size, shape and ecocorona influence the attachment and physical eco(cyto)toxicity of nanoparticles to algae? Nanotoxicology 2020 14 310 325 10.1080/17435390.2019.1692381 31775550 

  27. 27. Ponti J. Sabbioni E. Munaro B. Broggi F. Marmorato P. Franchini F. Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: An in vitro study in Balb/3T3 mouse fibroblasts Mutagenesis 2009 23 439 445 10.1093/mutage/gep027 

  28. 28. Ghio A.J. Carraway M.S. Madden M.C. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems J. Toxicol. Environ. Health B Crit. Rev. 2012 15 1 21 10.1080/10937404.2012.632359 22202227 

  29. 29. Chattopadhyay S. Dash S.K. Tripathy S. Das B. Mandal D. Pramanik P. Roy S. Toxicity of cobalt oxide nanoparticles to normal cells; an in vitro and in vivo study Chemico-Biolog. Interact. 2015 226 58 71 10.1016/j.cbi.2014.11.016 

  30. 30. Klaine S.J. Alvarez P.J.J. Batley G.E. Fernandes T.F. Handy R.D. Lyon D.Y. Mahendra S. McLaughlin M.J. Lead J.R. Nanomaterials in the environment: Behavior, fate, bioavailability and effects Environ. Toxicol. Chem. 2008 27 1825 1851 10.1897/08-090.1 19086204 

  31. 31. Shin Y.-J. Kwak J.I. An Y.-J. Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes Chemosphere 2012 88 524 529 10.1016/j.chemosphere.2012.03.010 22513336 

  32. 32. Gomes S.I.L. Soares A.M.V.M. Scott-Fordsmand J.J. Amorim M.J.B. Mechanisms of response to silver nanoparticles on Enchytraeus albidus (Oligochaeta) Survival, reproduction and gene expression profile J. Hazard. Mater. 2013 254?255 336 344 10.1016/j.jhazmat.2013.04.005 23644687 

  33. 33. Waalewijn-Kool P.L. Klein K. Fornis R.M. van Gestel C.A.M. Bioaccumulation and toxicity of silver nanoparticles and silver nitrate to the soil arthropod Folsomia candida Ecotoxicology 2014 23 1629 1637 10.1007/s10646-014-1302-y 25139028 

  34. 34. Tourinho P.S. van Gestel C.A.M. Jurkschat K. Soares A.M.V.M. Loureiro S. Effects of soil and dietary exposures to Ag nanoparticles and AgNO 3 in the terrestrial isopod Porcellionides pruinosus Environ. Pollut. 2015 205 170 177 10.1016/j.envpol.2015.05.044 26071943 

  35. 35. Abd-Alla M.H. Nafady N.A. Khalaf D.M. Assessment of silver nanoparticles contamination on faba bean- Rhizobium leguminosarum bv. viciae - Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule Agr. Ecosyst. Environ. 2016 218 163 177 10.1016/j.agee.2015.11.022 

  36. 36. Hossain Z. Mustafa G. Sakata K. Komatsu S. Insights into the proteomic response of soybean towards Al 2 O 3 , ZnO, and Ag nanoparticles stress J. Hazard. Mater. 2016 304 291 305 10.1016/j.jhazmat.2015.10.071 26561753 

  37. 37. Bossi E. Zanella D. Gornati R. Nernardini G. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes Sci. Rep. 2016 6 22254 10.1038/srep22254 26924527 

  38. 38. Wang P. Lombi E. Zhao F.-J. Kopittke P.M. Nanotechnology: A new opportunity in plant sciences Trends Plant Sci. 2016 21 699 712 10.1016/j.tplants.2016.04.005 27130471 

  39. 39. Abudayyak M. Gurkaynak T.A. Ozhan G. In vitro evaluation of cobalt oxide nanoparticle-induced toxicity Toxicol. Indust. Health 2017 33 646 654 10.1177/0748233717706633 

  40. 40. Serpone N. Dondi D. Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare product Inorgan. Chim. Acta 2007 360 794 802 10.1016/j.ica.2005.12.057 

  41. 41. Heinlaan M. Ivask A. Blinova I. Dubourguier H.C. Kahru A. Toxicity of nanosized and bulk ZnO, CuO and TiO 2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus Chemosphere 2008 71 1308 1316 10.1016/j.chemosphere.2007.11.047 18194809 

  42. 42. Aruoja V. Dubourguier H.C. Kasemets K. Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO 2 to microalgae Pseudokirchneriella subcapitata Sci. Tot. Environ. 2009 407 1461 1468 10.1016/j.scitotenv.2008.10.053 19038417 

  43. 43. You J. Zhang Y. Hu Z. Bacteria and bacteriophage inactivation by silver and zinc oxide nanoparticles Colloids Surf. Biointerfaces 2011 85 161 167 10.1016/j.colsurfb.2011.02.023 21398101 

  44. 44. Greulich C. Braun D. Peetsch A. Diendorf J. Siebers B. Epple M. Koller M. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range RSC Adv. 2012 2 6981 6987 10.1039/c2ra20684f 

  45. 45. Franci G. Falanga A. Galdiero S. Palomba L. Rai M. Morelli G. Galdiero M. Silver nanoparticles as potential antibacterial agents Molecules 2015 20 8856 8874 10.3390/molecules20058856 25993417 

  46. 46. Krishnaraj C. Harper S.L. Yun S.-I. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish ( Danio rerio ) J. Hazard. Mater. 2016 301 480 491 10.1016/j.jhazmat.2015.09.022 26414925 

  47. 47. Kwak J.I. An Y.-J. Trophic transfer of silver nanoparticles from earthworms disrupts the locomotion of springtails ( Collembola ) J. Hazard. Mater. 2016 315 110 116 10.1016/j.jhazmat.2016.05.005 27187058 

  48. 48. Di Salvatore M. Carafa A.M. Carrtu G. Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates Chemosphere 2008 73 1461 1464 10.1016/j.chemosphere.2008.07.061 18768198 

  49. 49. Tripathi D.K. Tripathi A. Singh S. Singh Y. Vishwakarma K. Yadav G. Sharma S. Singh V.K. Mishra R.K. Upadhyay R.G. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review Front. Microbiol. 2017 8 7 10.3389/fmicb.2017.00007 

  50. 50. Oukarroum A. Bras S. Perreault F. Popovic R. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta Ecotoxicol. Environ. Saf. 2012 78 80 85 10.1016/j.ecoenv.2011.11.012 22138148 

  51. 51. Kim S.W. Baek Y.-W. An Y.-J. Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis Appl. Microbiol. Biotechnol. 2011 92 1045 1052 10.1007/s00253-011-3611-x 21986863 

  52. 52. Petersen E.J. Pinto R.A. Landrum P.F. Weber W.J. Influence of carbon nanotubes on pyrene bioaccumulation from contaminated soils by earthworms Environ. Sci. Technol. 2009 43 4181 4187 10.1021/es803023a 19569349 

  53. 53. Vazquez-Munoz R. Borrego B. Juarez-Moreno K. Garcia-Garcia M. Mota Morales J.D. Bogdanchikova N. Huerta-Saquero A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological system matter? Toxicol. Lett. 2017 276 11 20 10.1016/j.toxlet.2017.05.007 28483428 

  54. 54. Shukhnova A. Bozrova S. Sokolov P. Berestovoy M. Karaulov A. Nabiev L. Dependence of nanoparticle toxicity on their physical and chemical properties Nanoscale Res. Lett. 2018 13 44 10.1186/s11671-018-2457-x 29417375 

  55. 55. Zoroddu M.A. Medici S. Ledda A. Nurchi V.M. Lachowicz J.I. Peana M. Toxicity of nanoparticles Curr. Med. Chem. 2014 21 3837 3853 10.2174/0929867321666140601162314 25306903 

  56. 56. Tanvir F. Yaqub A. Tanvir S. Anderson W.A. Poly-L-arginine coated silver nanoprisms and their anti-bacterial properties Nanomaterials 2017 7 296 10.3390/nano7100296 

  57. 57. Lopez-Heras M. Theodorou I.G. Leo B.F. Ryan M.P. Porter A.E. Towards understanding the antibacterial activity of Ag nanoparticles: Electron microscopy in the analysis of the materials-biology interface in the lung Environ. Sci. Nano 2015 2 312 326 10.1039/C5EN00051C 

  58. 58. Zhu X. Zhu L. Duan Z. Qi R. Li Y. Lang Y. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to Zebrafish ( Danio rerio ) early developmental stage J. Environ. Sci. Health A 2008 43 278 284 10.1080/10934520701792779 

  59. 59. Al-Bairuty G.A. Boyle D. Henry T.B. Handy R.D. Sublethal effects of copper sulphate compared to copper nanoparticles in rainbow trout ( Oncorhynchus mykiss ) at low pH: Physiology and metal accumulation Aquat. Toxicol. 2016 174 188 198 10.1016/j.aquatox.2016.02.006 26966873 

  60. 60. Razmara P. Lari E. Mohaddes E. Zhang Y.G. Goss G. Pyle G.G. The effect of copper nanoparticles on olfaction in rainbow trout ( Oncorhynchus mykiss ) Environ. Sci. Nano 2019 6 2094 2104 10.1039/C9EN00360F 

  61. 61. Huang J. Cheng J. Yi J. Impact of silver nanoparticles on marine diatom Skeletonema costatum J. Appl. Toxicol. 2016 36 1343 1354 10.1002/jat.3325 27080522 

  62. 62. Navarro E. Piccapietra F. Wagner B. Marconi F. Kaegi R. Odzak N. Sigg L. Behra R. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii Environ. Sci. Technol. 2008 42 8959 8964 10.1021/es801785m 19192825 

  63. 63. Dash A. Singh A.P. Chaudhary B.R. Singh S.K. Dash D. Effect of silver nanoparticles on growth of eukaryotic green algae Nano-Micro Lett. 2012 4 158 165 10.1007/BF03353707 

  64. 64. Zhang L. Goswami N. Xie J. Zhang B. He Y. Unraveling the molecular mechanism of photosynthetic toxicity of highly fluorescent silver nanoclusters to Scenedesmus obliquus Sci. Rep. 2017 7 16432 10.1038/s41598-017-16634-5 29180714 

  65. 65. Handy R.D. Cornelis G. Fernandes T. Tsyusko O. Decho A. Sabo-Attwood T. Metcalfe C. Steevens J.A. Klaine S.J. Koelmans A.A. Ecotoxicity test methods for engineered nanomaterials: Practical experiences and recommendations from the bench Environ. Toxicol. Chem. 2012 31 15 31 10.1002/etc.706 22002667 

  66. 66. Perreult F. Bogsan N. Morin M. Claverie J. Popovic R. Interaction of gold nanoplycodendrimers with algal cells ( Chlamydomonas reinhardtii ) and their effect on physiological processes Nanotoxicology 2011 6 109 120 10.3109/17435390.2011.562325 21417801 

  67. 67. Pikula K. Mintcheva N. Kulinich S.A. Zakharenko A. Markina Z. Chaika V. Orlova T. Mezhuev Y. Kokkinakis E. Tsatsakis A. Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species Environ. Res. 2020 186 109513 10.1016/j.envres.2020.109513 32305679 

  68. 68. Geisler-Lee J. Wang Q. Yao Y. Zhang W. Geisler M. Li K. Huang Y. Chen Y. Kolmakov A. Ma X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana Nanotoxicology 2013 7 323 337 10.3109/17435390.2012.658094 22263604 

  69. 69. Wang J. Koo Y. Alexander A. Yang Y. Westerhof S. Zhang Q. Schnoor J.L. Colvin V.L. Braam J. Alvarez P.J.J. Phytostimulation of Poplars and Arabidopsis exposed to silver nanoparticles and Ag + at sublethal concentrations Environ. Sci. Technol. 2013 47 5442 5449 10.1021/es4004334 23631766 

  70. 70. Papis E. Rossi F. Raspanti M. Dalle-Donne I. Colombo G. Milzani A. Bernardini G. Gornati R. Engineered cobalt oxide nanoparticles readily enter cells Toxicol. Lett. 2009 189 253 259 10.1016/j.toxlet.2009.06.851 19539014 

  71. 71. Lee W.-M. An Y.-J. Yoon H.K. Kweon H.-S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean ( Phaseolus radiates ) and wheat ( Triticum aestivum ): Plant agar test for water-insoluble nanoparticles Environ. Toxicol. Chem. 2008 27 103 112 10.1897/07-481.1 18092874 

  72. 72. Lu B. Smith T. Schmid J.J. Nanoparticle-lipid bilayer interactions studies with lipid bilayer arrays Nanoscale 2015 7 7858 7866 10.1039/C4NR06892K 25853986 

  73. 73. Wu F. Harper B.J. Harper S.L. Differential dissolution and toxicity of surface functionalized silver nanoparticles in small-scale microcosms: Impacts of community complexity Environ. Sci. Nano 2017 4 359 372 10.1039/C6EN00324A 

  74. 74. Rahman A. Kumar S. Bafana A. Dahoumane S.A. Jeffryes C. Biosynthetic conversion Ag + to highly stable Ag 0 nanoparticles by wild type and cell wall deficient strains of Chlamydomonas reinhardtii Molecules 2019 24 98 10.3390/molecules24010098 30597856 

  75. 75. Kong I.C. Ko K.S. Koh D.-C. Chon C.-M. Comparative effects of particle sizes of cobalt nanoparticles to nine biological activities Int. J. Mol. Sci. 2020 21 6767 10.3390/ijms21186767 

  76. 76. Ko K.S. Kong I.C. Influence of incubation conditions on the nanoparticles toxicity based on seed germination and bacterial bioluminescence J. Nanosci. Nanotechnol. 2017 17 2382 2389 10.1166/jnn.2017.13098 29648419 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로