$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] LoBSTr: Real‐time Lower‐body Pose Prediction from Sparse Upper‐body Tracking Signals 원문보기

Computer graphics forum : journal of the European Association for Computer Graphics, v.40 no.2, 2021년, pp.265 - 275  

Yang, Dongseok (Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Doyeon (Korea Advanced Institute of Science and Technology (KAIST)) ,  Lee, Sung‐Hee (Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

AbstractWith the popularization of games and VR/AR devices, there is a growing need for capturing human motion with a sparse set of tracking data. In this paper, we introduce a deep neural network (DNN) based method for real‐time prediction of the lower‐body pose only from the tracking s...

Keyword

참고문헌 (35)

  1. “Carnegie-Mellon Motion Capture Database”. (2013). url: %5Curl%7Bhttps://mocap.cs.cmu.edu%7D 2 10. 

  2. 10.1109/WACV.2019.00156 Chiu Hsu-kuang Adeli Ehsan Wang Borui et al. “Action-agnostic human pose forecasting”.2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE.2019 1423-14323. 

  3. Chung Junyoung Gulcehre Caglar Cho KyungHyun andBengio Yoshua. “Empirical evaluation of gated recurrent neural networks on sequence modeling”.arXiv preprint arXiv:1412.3555(2014) 4. 

  4. 10.1145/1186822.1073248 Chai JinxiangandHodgins Jessica K.“Performance animation from low-dimensional control signals”.ACM SIGGRAPH 2005 Papers.2005 686-6962. 

  5. 10.1109/ICCV.2019.00081 Cheng Yu Yang Bo Wang Bo et al. “Occlusion-aware networks for 3d human pose estimation in video”.Proceedings of the IEEE International Conference on Computer Vision.2019 723-7323. 

  6. DeepMotion. “How To Make 3 Point Tracked Full-Body Avatars in VR”. (Apr.2018). url:https://blog.deepmotion.com/2018/04/30/how-to-make-3-point-tracked-full-body-avatars-in-vr/2 3. 

  7. 10.1145/1186562.1015755 Grochow Keith Martin Steven L Hertzmann Aaron andPopović Zoran. “Style-based inverse kinematics”.ACM SIGGRAPH 2004 Papers.2004 522-5312. 

  8. ACM Transactions on Graphics (TOG) Huang Yinghao 1 37 2018 10.1145/3272127.3275108 Deep inertial poser: learning to reconstruct human pose from sparse inertial measurements in real time 

  9. ACM Transactions on Graphics (TOG) Holden Daniel 53 39 2020 Learned motion matching 

  10. Holden, Daniel, Komura, Taku, Saito, Jun. Phase-functioned neural networks for character control. ACM transactions on graphics, vol.36, no.4, 1-13.

  11. Holden, Daniel. Robust solving of optical motion capture data by denoising. ACM transactions on graphics, vol.37, no.4, 1-12.

  12. Hochreiter, Sepp, Schmidhuber, Jürgen. Long Short-Term Memory. Neural computation, vol.9, no.8, 1735-1780.

  13. Holden, Daniel, Saito, Jun, Komura, Taku. A deep learning framework for character motion synthesis and editing. ACM transactions on graphics, vol.35, no.4, 1-11.

  14. 10.1145/2820903.2820918 Holden Daniel Saito Jun Komura Taku andJoyce Thomas. “Learning motion manifolds with convolutional autoencoders”.SIGGRAPH Asia 2015 Technical Briefs.2015 1-46. 

  15. Jang Deok-KyeongandLee Sung-Hee. “Constructing Human Motion Manifold With Sequential Networks”.Computer Graphics Forum. Wiley Online Library.20202. 

  16. 10.1145/3013971.3013987 Jiang Fan Yang Xubo andFeng Lele. “Real-time full-body motion reconstruction and recognition for off-the-shelf VR devices”.Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry-Volume 1.2016 309-3183. 

  17. Kim, SangBin, Park, Inbum, Kwon, Seongsu, Han, JungHyun. Motion Retargetting based on Dilated Convolutions and Skeleton‐specific Loss Functions. Computer graphics forum : journal of the European Association for Computer Graphics, vol.39, no.2, 497-507.

  18. Kreylos Oliver. “Lighthouse tracking examined”. (May2016). url:http://doc-ok.org/?page_id=610. 

  19. Lin JamesandO'Brien James. “Temporal IK: Data-Driven Pose Estimation for Virtual Realiity”. (2019) 2 3. 

  20. 10.1145/1944745.1944768 Liu Huajun Wei Xiaolin Chai Jinxiang et al. “Realtime human motion control with a small number of inertial sensors”.Symposium on interactive 3D graphics and games.2011 133-1402. 

  21. Levine, Sergey, Wang, Jack M., Haraux, Alexis, Popović, Zoran, Koltun, Vladlen. Continuous character control with low-dimensional embeddings. ACM transactions on graphics, vol.31, no.4, 1-10.

  22. ACM Transactions on Graphics (TOG) Ling Hung Yu 40 39 2020 Character controllers using motion vaes 

  23. 10.1145/1111411.1111418 Liu Guodong Zhang Jingdan Wang Wei andMcMillan Leonard. “Human motion estimation from a reduced marker set”.Proceedings of the 2006 symposium on Interactive 3D graphics and games.2006 35-422. 

  24. 10.1109/CVPR.2017.497 Martinez Julieta Black Michael J andRomero Javier. “On human motion prediction using recurrent neural networks”.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017 2891-29006 8. 

  25. 10.1109/WACV.2013.6474999 Ofli Ferda Chaudhry Rizwan Kurillo Gregorij et al. “Berkeley mhad: A comprehensive multimodal human action database”.2013 IEEE Workshop on Applications of Computer Vision (WACV). IEEE.2013 53-602 10. 

  26. 10.1007/s11263-019-01245-6 Pavllo Dario Feichtenhofer Christoph Auli Michael andGrangier David. “Modeling human motion with quaternion-based neural networks”.International Journal of Computer Vision(2019) 1-184. 

  27. Pavllo Dario Grangier David andAuli Michael. “Quaternet: A quaternion-based recurrent model for human motion”.arXiv preprint arXiv:1805.06485(2018) 4. 

  28. Rockwell ChrisandFouhey David F.“Full-body awareness from partial observations”.arXiv preprint arXiv:2008.06046(2020) 3. 

  29. Root-Motion. “FINAL-IK”. (2017) 5. 

  30. ACM Transactions on Graphics (TOG) Shi Mingyi 1 40 2020 MotioNet: 3D Human Motion Reconstruction from Monocular Video with Skeleton Consistency 

  31. Safonova, Alla, Hodgins, Jessica K., Pollard, Nancy S.. Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. ACM transactions on graphics, vol.23, no.3, 514-521.

  32. ACM Transactions on Graphics (TOG) Starke Sebastian 54 39 2020 Local motion phases for learning multi-contact character movements 

  33. 10.1145/3359996.3364240 Thomasset Vincent Caron Stéphane andWeistroffer Vincent. “Lower body control of a semi-autonomous avatar in Virtual Reality: Balance and Locomotion of a 3D Bipedal Model”.25th ACM Symposium on Virtual Reality Software and Technology.2019 1-113. 

  34. 10.1109/CVPR.2018.00901 Villegas Ruben Yang Jimei Ceylan Duygu andLee Honglak. “Neural kinematic networks for unsupervised motion retargetting”.Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018 8639-86484. 

  35. Sensors Wouda Frank J 19 2019 Time Coherent Full-Body Poses Estimated Using Only Five Inertial Sensors: Deep versus Shallow Learning 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

원문 보기

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로