$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Azimuthal correlations of prompt D mesons with charged particles in pp and p-Pb collisions at $$\\varvec{\\sqrt{s_\\mathrm{NN}}} = 5.02\\ \\hbox {TeV}$$ 원문보기

The European physical journal. C, Particles and fields, v.80 no.10, 2020년, pp.979 -   

Acharya, S. ,  Adamová, D. ,  Adler, A. ,  Adolfsson, J. ,  Aggarwal, M. M. ,  Aglieri Rinella, G. ,  Agnello, M. ,  Agrawal, N. ,  Ahammed, Z. ,  Ahmad, S. ,  Ahn, S. U. ,  Akindinov, A. ,  Al-Turany, M. ,  Alam, S. N. ,  Albuquerque, D. S. D. ,  Aleksandrov, D. ,  Alessandro, B. ,  Alfanda, H. M. ,  Alfaro Molina, R. ,  Ali, B. ,  Ali, Y. ,  Alici, A. ,  Alkin, A. ,  Alme, J. ,  Alt, T. ,  Altenkamper, L. ,  Altsybeev, I. ,  Anaam, M. N. ,  Andrei, C. ,  Andreou, D. ,  Andrews, H. A. ,  Andronic, A. ,  Angeletti, M. ,  Anguelov, V. ,  Anson, C. ,  Antičić, T. ,  Antinori, F. ,  Antonioli, P. ,  Anwar, R. ,  Apadula, N. ,  Aphecetche, L. ,  Appelshäuser, H. ,  Arcelli, S. ,  Arnaldi, R. ,  Arratia, M. ,  Arsene, I. C. ,  Arslandok, M. ,  Augustinus, A. ,  Averbeck, R. ,  Aziz, S. ,  Azmi, M. D. ,  Badalà, A. ,  Baek, Y. W. ,  Bagnasco, S. ,  Bai, X. ,  Bailhache, R. ,  Bala, R. ,  Baldisseri, A. ,  Ball, M. ,  Balouza, S. ,  Barbera, R. ,  Barioglio, L. ,  Barnaföldi, G. G. ,  Barnby, L. S. ,  Barret, V. ,  Barta

Abstract AI-Helper 아이콘AI-Helper

AbstractThe measurement of the azimuthal-correlation function of prompt D mesons with charged particles in pp collisions at $$\sqrt{s} =5.02\ \hbox {TeV}$$$ \sqrt{ s } = 5.02 \text{TeV} $ and p-Pb collisions at $$\sqrt{s_{\mathrm{NN}}} = 5.02\ \hbox {TeV}$$$ ...

참고문헌 (73)

  1. Eur. Phys. J. C A Beraudo 75 3 121 2015 10.1140/epjc/s10052-015-3336-6 A. Beraudo, A. De Pace, M. Monteno, M. Nardi, F. Prino, Heavy flavors in heavy-ion collisions: quenching, flow and correlations. Eur. Phys. J. C 75(3), 121 (2015). https://doi.org/10.1140/epjc/s10052-015-3336-6. arXiv:1410.6082 [hep-ph] 

  2. 10.1140/epjc/s10052-017-4779-8 ALICE Collaboration, J. Adam et al., Measurement of azimuthal correlations of D mesons and charged particles in pp collisions at $$\sqrt{s}=7\ \text{TeV}$$ and p-Pb collisions at $$\sqrt{s_{{\rm NN}}}=5.02\ \text{ TeV }$$. Eur. Phys. J. C 77(4), 245 (2017). https://doi.org/10.1140/epjc/s10052-017-4779-8. arXiv:1605.06963 [nucl-ex] 

  3. 10.1103/PhysRevD.85.052005 ATLAS Collaboration, G. Aad et al., Measurement of $$D^{*\pm }$$ meson production in jets from pp collisions at $$\sqrt{s} = 7$$ TeV with the ATLAS detector. Phys. Rev. D 85, 052005 (2012). https://doi.org/10.1103/PhysRevD.85.052005. arXiv:1112.4432 [hep-ex] 

  4. 10.1007/JHEP08(2019)133 ALICE Collaboration, S. Acharya et al., Measurement of the production of charm jets tagged with $$\text{ D}^{0}$$ mesons in pp collisions at $$\sqrt{s}=7\ \text{ TeV }$$. JHEP 08, 133 (2019). https://doi.org/10.1007/JHEP08(2019)133. arXiv:1905.02510 [nucl-ex] 

  5. 10.1016/j.physletb.2017.06.053 CMS Collaboration, A.M. Sirunyan et al., Measurements of the charm jet cross section and nuclear modification factor in pPb collisions at $$\sqrt{{s}_{NN}} = 5.02\ \text{ TeV }$$. Phys. Lett. B 772, 306-329 (2017). https://doi.org/10.1016/j.physletb.2017.06.053. arXiv:1612.08972 [nucl-ex] 

  6. J. Phys. F Prino G43 9 093002 2016 10.1088/0954-3899/43/9/093002 F. Prino, R. Rapp, Open heavy flavor in QCD matter and in nuclear collisions. J. Phys. G43(9), 093002 (2016). https://doi.org/10.1088/0954-3899/43/9/093002. arXiv:1603.00529 [nucl-ex] 

  7. JHEP T Sjostrand 05 026 2006 10.1088/1126-6708/2006/05/026 T. Sjostrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). https://doi.org/10.1088/1126-6708/2006/05/026. arXiv:hep-ph/0603175 [hep-ph] 

  8. Comput. Phys. Commun. T Sjostrand 178 852 2008 10.1016/j.cpc.2008.01.036 T. Sjostrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852-867 (2008). https://doi.org/10.1016/j.cpc.2008.01.036. arXiv:0710.3820 [hep-ph] 

  9. JHEP G Corcella 01 010 2001 10.1088/1126-6708/2001/01/010 G. Corcella, I.G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M.H. Seymour, B.R. Webber, HERWIG 6: An Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP 01, 010 (2001). https://doi.org/10.1088/1126-6708/2001/01/010. arXiv:hep-ph/0011363 [hep-ph] 

  10. Eur. Phys. J. C J Bellm 76 4 196 2016 10.1140/epjc/s10052-016-4018-8 J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note. Eur. Phys. J. C 76(4), 196 (2016). https://doi.org/10.1140/epjc/s10052-016-4018-8. arXiv:1512.01178 [hep-ph] 

  11. Eur. Phys. J. C M Bahr 58 639 2008 10.1140/epjc/s10052-008-0798-9 M. Bahr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639-707 (2008). https://doi.org/10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883 [hep-ph] 

  12. Phys. Rev. C K Werner 82 044904 2010 10.1103/PhysRevC.82.044904 K. Werner, I. Karpenko, T. Pierog, M. Bleicher, K. Mikhailov, Event-by-event simulation of the three-dimensional hydrodynamic evolution from flux tube initial conditions in ultrarelativistic heavy ion collisions. Phys. Rev. C 82, 044904 (2010). https://doi.org/10.1103/PhysRevC.82.044904. arXiv:1004.0805 [nucl-th] 

  13. Phys. Rept. HJ Drescher 350 93 2001 10.1016/S0370-1573(00)00122-8 H.J. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, K. Werner, Parton based Gribov-Regge theory. Phys. Rept. 350, 93-289 (2001). https://doi.org/10.1016/S0370-1573(00)00122-8. arXiv:hep-ph/0007198 [hep-ph] 

  14. JHEP P Nason 11 040 2004 10.1088/1126-6708/2004/11/040 P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146 [hep-ph] 

  15. JHEP S Frixione 11 070 2007 10.1088/1126-6708/2007/11/070 S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/11/070. arXiv:0709.2092 [hep-ph] 

  16. Phys. Rept. P Braun-Munzinger 621 76 2016 10.1016/j.physrep.2015.12.003 P. Braun-Munzinger, V. Koch, T. Schäfer, J. Stachel, Properties of hot and dense matter from relativistic heavy ion collisions. Phys. Rept. 621, 76-126 (2016). https://doi.org/10.1016/j.physrep.2015.12.003. arXiv:1510.00442 [nucl-th] 

  17. 10.1103/PhysRevD.90.094503 HotQCD Collaboration, A. Bazavov et al., Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). https://doi.org/10.1103/PhysRevD.90.094503. arXiv:1407.6387 [hep-lat] 

  18. Phys. Rev. C M Nahrgang 90 2 024907 2014 10.1103/PhysRevC.90.024907 M. Nahrgang, J. Aichelin, P.B. Gossiaux, K. Werner, Azimuthal correlations of heavy quarks in Pb + Pb collisions at $$\sqrt{s}=2.76 \text{ TeV }$$ at the CERN large Hadron collider. Phys. Rev. C 90(2), 024907 (2014). https://doi.org/10.1103/PhysRevC.90.024907. arXiv:1305.3823 [hep-ph] 

  19. Nucl. Phys. A S Cao 967 628 2017 10.1016/j.nuclphysa.2017.05.086 S. Cao, T. Luo, Y. He, G.-Y. Qin, X.-N. Wang, Heavy and light hadron production and D-hadron correlation in relativistic heavy-ion collisions. Nucl. Phys. A 967, 628-631 (2017). https://doi.org/10.1016/j.nuclphysa.2017.05.086 

  20. 10.1103/PhysRevC.83.044912 PHENIX Collaboration, A. Adare et al., Azimuthal correlations of electrons from heavy-flavor decay with hadrons in p+p and Au+Au collisions at $$\sqrt{s_{{\rm NN}}}=200$$ GeV. Phys. Rev. C 83, 044912 (2011). https://doi.org/10.1103/PhysRevC.83.044912. arXiv:1011.1477 [nucl-ex] 

  21. 10.1103/PhysRevC.102.014905 STAR Collaboration, J. Adam et al., Measurement of $$\text{ D}^0$$-meson + hadron two-dimensional angular correlations in Au+Au collisions at $$\sqrt{s_{{\rm NN}}} = 200\ \text{ GeV }$$. Phys. Rev. C 102, 014905 (2020). https://doi.org/10.1103/PhysRevC.102.014905. arXiv:1911.12168 [nucl-ex] 

  22. Phys. Rev. C S Cao 92 5 054909 2015 10.1103/PhysRevC.92.054909 S. Cao, G.-Y. Qin, S.A. Bass, Modeling of heavy-flavor pair correlations in Au-Au collisions at 200A GeV at the BNL relativistic heavy ion collider. Phys. Rev. C 92(5), 054909 (2015). https://doi.org/10.1103/PhysRevC.92.054909. arXiv:1505.01869 [nucl-th] 

  23. Nucl. Phys. A S Cao 956 505 2016 10.1016/j.nuclphysa.2015.12.012 S. Cao, G.-Y. Qin, S.A. Bass, Suppression and two-particle correlations of heavy mesons in heavy-ion collisions. Nucl. Phys. A 956, 505-508 (2016). https://doi.org/10.1016/j.nuclphysa.2015.12.012 

  24. Eur. Phys. J. C KJ Eskola 77 3 163 2017 10.1140/epjc/s10052-017-4725-9 K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, EPPS16: nuclear parton distributions with LHC data. Eur. Phys. J. C 77(3), 163 (2017). https://doi.org/10.1140/epjc/s10052-017-4725-9. arXiv:1612.05741 [hep-ph] 

  25. 10.1007/JHEP12(2019)092 ALICE Collaboration, S. Acharya et al., Measurement of prompt $$\text{ D}^0$$, $$\text{ D}^+$$, $$\text{ D}^{*+}$$, and $$\text{ D}^+_s$$ production in p-Pb collisions at $$\sqrt{s_{{\rm NN}}} = {\bf 5.02}\,{\bf TeV}$$. JHEP 12, 092 (2019). https://doi.org/10.1007/JHEP12(2019)092. arXiv:1906.03425 [nucl-ex] 

  26. 10.1016/j.physletb.2015.12.067 ALICE Collaboration, J. Adam et al., Measurement of electrons from heavy-flavour hadron decays in p-Pb collisions at $$\sqrt{s_{{\rm NN}}} = 5.02\ \text{ TeV }$$. Phys. Lett. B 754, 81-93 (2016). https://doi.org/10.1016/j.physletb.2015.12.067. arXiv:1509.07491 [nucl-ex] 

  27. Nucl. Phys. A H Fujii 920 78 2013 10.1016/j.nuclphysa.2013.10.006 H. Fujii, K. Watanabe, Heavy quark pair production in high energy pA collisions: Open heavy flavors. Nucl. Phys. A 920, 78-93 (2013). https://doi.org/10.1016/j.nuclphysa.2013.10.006. arXiv:1308.1258 [hep-ph] 

  28. 10.1103/PhysRevLett.111.212301 PHENIX Collaboration, A. Adare et al., Quadrupole anisotropy in Dihadron azimuthal correlations in central $$d$$+Au collisions at $$\sqrt{s_{{\rm NN}}} = 200\ \text{ GeV }$$. Phys. Rev. Lett. 111(21), 212301 (2013). https://doi.org/10.1103/PhysRevLett.111.212301. arXiv:1303.1794 [nucl-ex] 

  29. 10.1016/j.physletb.2015.05.075 STAR Collaboration, L. Adamczyk et al., Long-range pseudorapidity dihadron correlations in $$d$$+Au collisions at $$\sqrt{s_{{\rm NN}}}=200\ \text{ GeV }$$. Phys. Lett. B 747, 265-271 (2015). https://doi.org/10.1016/j.physletb.2015.05.075. arXiv:1502.07652 [nucl-ex] 

  30. 10.1016/j.physletb.2013.01.012 ALICE Collaboration, B. Abelev et al., Long-range angular correlations on the near and away side in p-Pb collisions at $$\sqrt{s_{{\rm NN}}}=5.02\ \text{ TeV }$$. Phys. Lett. B 719, 29-41 (2013). https://doi.org/10.1016/j.physletb.2013.01.012. arXiv:1212.2001 [nucl-ex] 

  31. 10.1016/j.physletb.2013.08.024 ALICE Collaboration, B. Abelev et al., Long-range angular correlations of $$\rm \pi $$, K and p in p-Pb collisions at $$\sqrt{s_{{\rm NN}}}= 5.02\ \text{ TeV }$$. Phys. Lett. B 726, 164-177 (2013). https://doi.org/10.1016/j.physletb.2013.08.024. arXiv:1307.3237 [nucl-ex] 

  32. 10.1103/PhysRevC.96.024908 ATLAS Collaboration, M. Aaboud et al., Measurements of long-range azimuthal anisotropies and associated Fourier coefficients for $$pp$$ collisions at $$\sqrt{s} = 5.02$$ and $$13$$ TeV and $$p$$+Pb collisions at $$\sqrt{s_{{\rm NN}}} = 5.02\ \text{ TeV }$$ with the ATLAS detector. Phys. Rev. C 96(2), 024908 (2017). https://doi.org/10.1103/PhysRevC.96.024908. arXiv:1609.06213 [nucl-ex] 

  33. 10.1016/j.physletb.2013.06.028 CMS Collaboration, S. Chatrchyan et al., Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B 724, 213-240 (2013). https://doi.org/10.1016/j.physletb.2013.06.028. arXiv:1305.0609 [nucl-ex] 

  34. 10.1007/JHEP09(2010)091 CMS Collaboration, V. Khachatryan et al., Observation of long-range near-side angular correlations in proton-proton collisions at the LHC. JHEP 09, 091 (2010). https://doi.org/10.1007/JHEP09(2010)091. arXiv:1009.4122 [hep-ex] 

  35. 10.1016/j.physletb.2015.01.034 CMS Collaboration, V. Khachatryan et al., Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies. Phys. Lett. B 742, 200-224 (2015). https://doi.org/10.1016/j.physletb.2015.01.034. arXiv:1409.3392 [nucl-ex] 

  36. Phys. Rev. Lett. K Werner 106 122004 2011 10.1103/PhysRevLett.106.122004 K. Werner, I. Karpenko, T. Pierog, The ’Ridge’ in proton-proton scattering at 7 TeV. Phys. Rev. Lett. 106, 122004 (2011). https://doi.org/10.1103/PhysRevLett.106.122004. arXiv:1011.0375 [hep-ph] 

  37. Phys. Lett. B W-T Deng 711 301 2012 10.1016/j.physletb.2012.04.010 W.-T. Deng, Z. Xu, C. Greiner, Elliptic and triangular flow and their correlation in ultrarelativistic high multiplicity proton proton collisions at 14 TeV. Phys. Lett. B 711, 301-306 (2012). https://doi.org/10.1016/j.physletb.2012.04.010. arXiv:1112.0470 [hep-ph] 

  38. Phys. Rev. C C-Y Wong 84 024901 2011 10.1103/PhysRevC.84.024901 C.-Y. Wong, Momentum kick model description of the ridge in $$\Delta \phi $$-$$\Delta \eta $$ correlation in pp collisions at 7 TeV. Phys. Rev. C 84, 024901 (2011). https://doi.org/10.1103/PhysRevC.84.024901. arXiv:1105.5871 [hep-ph] 

  39. Nucl. Phys. A A Dumitru 922 140 2014 10.1016/j.nuclphysa.2013.12.001 A. Dumitru, T. Lappi, L. McLerran, Are the angular correlations in $$pA$$ collisions due to a Glasmion or Bose condensation? Nucl. Phys. A 922, 140-149 (2014). https://doi.org/10.1016/j.nuclphysa.2013.12.001. arXiv:1310.7136 [hep-ph] 

  40. Phys. Rev. C A Bzdak 87 6 064906 2013 10.1103/PhysRevC.87.064906 A. Bzdak, B. Schenke, P. Tribedy, R. Venugopalan, Initial state geometry and the role of hydrodynamics in proton-proton, proton-nucleus and deuteron-nucleus collisions. Phys. Rev. C 87(6), 064906 (2013). https://doi.org/10.1103/PhysRevC.87.064906. arXiv:1304.3403 [nucl-th] 

  41. Phys. Rev. D K Dusling 87 9 094034 2013 10.1103/PhysRevD.87.094034 K. Dusling, R. Venugopalan, Comparison of the color glass condensate to dihadron correlations in proton-proton and proton-nucleus collisions. Phys. Rev. D 87(9), 094034 (2013). https://doi.org/10.1103/PhysRevD.87.094034. arXiv:1302.7018 [hep-ph] 

  42. Eur. Phys. J. C BA Arbuzov 71 1730 2011 10.1140/epjc/s10052-011-1730-2 B.A. Arbuzov, E.E. Boos, V.I. Savrin, CMS ridge effect at LHC as a manifestation of bremstralung of gluons due to the quark-anti-quark string formation. Eur. Phys. J. C 71, 1730 (2011). https://doi.org/10.1140/epjc/s10052-011-1730-2. arXiv:1104.1283 [hep-ph] 

  43. 10.1103/PhysRevLett.122.072301 ALICE Collaboration, S. Acharya et al., Azimuthal Anisotropy of Heavy-Flavor Decay Electrons in $$p$$-Pb Collisions at $$\sqrt{s_{{\rm NN}}}= 5.02\ \text{ TeV }$$. Phys. Rev. Lett. 122(7), 072301 (2019). https://doi.org/10.1103/PhysRevLett.122.072301. arXiv:1805.04367 [nucl-ex] 

  44. 10.1016/j.physletb.2018.02.039 ALICE Collaboration, S. Acharya et al., Search for collectivity with azimuthal J/$$\psi $$-hadron correlations in high multiplicity p-Pb collisions at $$\sqrt{s_{{\rm NN}}}= 5.02$$ and 8.16 TeV. Phys. Lett. B 780, 7-20 (2018). https://doi.org/10.1016/j.physletb.2018.02.039. arXiv:1709.06807 [nucl-ex] 

  45. 10.1016/j.physletb.2015.12.010 ALICE Collaboration, J. Adam et al., Forward-central two-particle correlations in p-Pb collisions at $$\sqrt{s_{{\rm NN}}} =5.02\ \text{ TeV }$$. Phys. Lett. B 753, 126-139 (2016). https://doi.org/10.1016/j.physletb.2015.12.010. arXiv:1506.08032 [nucl-ex] 

  46. ATLAS Collaboration, $$D$$ meson production and long-range azimuthal correlation in $$8.16\ {\rm TeV}\ p$$+Pb collisions with ATLAS, Tech. Rep. ATLAS-CONF-2017-073, CERN, Geneva (2017). http://cds.cern.ch/record/2285811 

  47. ATLAS Collaboration, Measurement of the long-range pseudorapidity correlations between muons and charged-particles in $$\sqrt{s_{{\rm NN}}}= 8.16\ \text{ TeV }$$ proton-lead collisions with the ATLAS detector, Tech. Rep. ATLAS-CONF-2017-006, CERN, Geneva (2017). https://cds.cern.ch/record/2244808 

  48. 10.1103/PhysRevLett.124.082301 ATLAS Collaboration, G. Aad et al., Measurement of azimuthal anisotropy of muons from charm and bottom hadrons in $$pp$$ collisions at $$\sqrt{s}=13\ \text{ TeV }$$ with the ATLAS detector. Phys. Rev. Lett. 124(8), 082301 (2020). https://doi.org/10.1103/PhysRevLett.124.082301. arXiv:1909.01650 [nucl-ex] 

  49. 10.1103/PhysRevLett.121.082301 CMS Collaboration, A.M. Sirunyan et al., Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $$\sqrt{s_{{\rm NN}}} = 8.16\ \text{ TeV }$$. Phys. Rev. Lett. 121(8), 082301 (2018). https://doi.org/10.1103/PhysRevLett.121.082301. arXiv:1804.09767 [hep-ex] 

  50. 10.1016/j.physletb.2019.02.018 CMS Collaboration, A.M. Sirunyan et al., Observation of prompt J/$$\psi $$ meson elliptic flow in high-multiplicity pPb collisions at $$\sqrt{s_{\rm NN}} = 8.16\ \text{ TeV }$$. Phys. Lett. B 791, 172-194 (2019). https://doi.org/10.1016/j.physletb.2019.02.018. arXiv:1810.01473 [hep-ex] 

  51. 10.1088/1748-0221/3/08/S08002 ALICE Collaboration, K. Aamodt et al., The ALICE experiment at the CERN LHC. JINST 3, S08002 (2008). https://doi.org/10.1088/1748-0221/3/08/S08002 

  52. 10.1142/S0217751X14300440 ALICE Collaboration, B. Abelev et al., Performance of the ALICE Experiment at the CERN LHC. Int. J. Mod. Phys. A 29, 1430044 (2014). https://doi.org/10.1142/S0217751X14300440. arXiv:1402.4476 [nucl-ex] 

  53. 10.1140/epjp/i2017-11279-1 ALICE Collaboration, J. Adam et al., Determination of the event collision time with the ALICE detector at the LHC. Eur. Phys. J. Plus 132(2), 99 (2017). https://doi.org/10.1140/epjp/i2017-11279-1. arXiv:1610.03055 [physics.ins-det] 

  54. 10.1088/1748-0221/8/10/P10016 ALICE Collaboration, E. Abbas et al., Performance of the ALICE VZERO system. JINST 8, P10016 (2013). https://doi.org/10.1088/1748-0221/8/10/P10016. arXiv:1306.3130 [nucl-ex] 

  55. 10.1103/PhysRevC.91.064905 ALICE Collaboration, J. Adam et al., Centrality dependence of particle production in p-Pb collisions at $$\sqrt{s_{{\rm NN}}}= 5.02\ \text{ TeV }$$. Phys. Rev. C 91(6), 064905 (2015). https://doi.org/10.1103/PhysRevC.91.064905. arXiv:1412.6828 [nucl-ex] 

  56. R. Brun, F. Bruyant, F. Carminati, S. Giani, M. Maire, A. McPherson, G. Patrick, L. Urban, GEANT: Detector Description and Simulation Tool. http://cds.cern.ch/record/1082634 

  57. Eur. Phys. J. C P Skands 74 8 3024 2014 10.1140/epjc/s10052-014-3024-y P. Skands, S. Carrazza, J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune. Eur. Phys. J. C 74(8), 3024 (2014). https://doi.org/10.1140/epjc/s10052-014-3024-y. arXiv:1404.5630 [hep-ph] 

  58. Phys. Rev. D X-N Wang 44 3501 1991 10.1103/PhysRevD.44.3501 X.-N. Wang, M. Gyulassy, HIJING: A Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Phys. Rev. D 44, 3501-3516 (1991). https://doi.org/10.1103/PhysRevD.44.3501 

  59. 10.1103/PhysRevLett.110.032301 ALICE Collaboration, B. Abelev et al., Pseudorapidity density of charged particles in $$p$$ + Pb collisions at $$\sqrt{s_{NN}}=5.02\ \text{ TeV }$$. Phys. Rev. Lett. 110(3), 032301 (2013). https://doi.org/10.1103/PhysRevLett.110.032301. arXiv:1210.3615 [nucl-ex] 

  60. ALICE Collaboration, The ALICE definition of primary particles, Tech. Rep. ALICE-PUBLIC-2017-005 (2017). https://cds.cern.ch/record/2270008 

  61. 10.1103/PhysRevD.98.030001 Particle Data Group Collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001 

  62. 10.1140/epjc/s10052-019-6873-6 ALICE Collaboration, S. Acharya et al., Measurement of $$\text{ D}^{0}$$, $$\text{ D}^{+}$$, $$\text{ D}^{*+}$$ and $$\text{ D}^+_{{\rm s}}$$ production in pp collisions at $$\sqrt{\mathit{s}} = 5.02\ \text{ TeV }$$ with ALICE. Eur. Phys. J. C 79(5), 388 (2019). https://doi.org/10.1140/epjc/s10052-019-6873-6. arXiv:1901.07979 [nucl-ex] 

  63. 10.1140/epjc/s10052-017-5090-4 ALICE Collaboration, S. Acharya et al., Measurement of D-meson production at mid-rapidity in pp collisions at $${\sqrt{s}=7}\ \text{ TeV }$$”, Eur. Phys. J. C 77(8), 550 (2017). https://doi.org/10.1140/epjc/s10052-017-5090-4. arXiv:1702.00766 [hep-ex] 

  64. Phys. Rev. D PZ Skands 82 074018 2010 10.1103/PhysRevD.82.074018 P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010). https://doi.org/10.1103/PhysRevD.82.074018. arXiv:1005.3457 [hep-ph] 

  65. JHEP R Corke 03 032 2011 10.1007/JHEP03(2011)032 R. Corke, T. Sjostrand, Interleaved parton showers and tuning prospects. JHEP 03, 032 (2011). https://doi.org/10.1007/JHEP03(2011)032. arXiv:1011.1759 [hep-ph] 

  66. JHEP S Alioli 06 043 2010 10.1007/JHEP06(2010)043 S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). https://doi.org/10.1007/JHEP06(2010)043. arXiv:1002.2581 [hep-ph] 

  67. JHEP M Cacciari 10 137 2012 10.1007/JHEP10(2012)137 M. Cacciari, S. Frixione, N. Houdeau, M.L. Mangano, P. Nason, G. Ridolfi, Theoretical predictions for charm and bottom production at the LHC. JHEP 10, 137 (2012). https://doi.org/10.1007/JHEP10(2012)137. arXiv:1205.6344 [hep-ph] 

  68. Phys. Rev. C K Werner 89 6 064903 2014 10.1103/PhysRevC.89.064903 K. Werner, B. Guiot, I. Karpenko, T. Pierog, Analysing radial flow features in p-Pb and p-p collisions at several TeV by studying identified particle production in EPOS3. Phys. Rev. C 89(6), 064903 (2014). https://doi.org/10.1103/PhysRevC.89.064903. arXiv:1312.1233 [nucl-th] 

  69. 10.1007/JHEP09(2015)148 ALICE Collaboration, J. Adam et al., Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at $$\sqrt{s}=7\ \text{ TeV }$$. JHEP 09, 148 (2015). https://doi.org/10.1007/JHEP09(2015)148. arXiv:1505.00664 [nucl-ex] 

  70. Eur. Phys. J. SG Weber C79 1 36 2019 10.1140/epjc/s10052-018-6531-4 S.G. Weber, A. Dubla, A. Andronic, A. Morsch, Elucidating the multiplicity dependence of $$\text{ J }/\psi $$ production in proton-proton collisions with PYTHIA8. Eur. Phys. J. C79(1), 36 (2019). https://doi.org/10.1140/epjc/s10052-018-6531-4. arXiv:1811.07744 [nucl-th] 

  71. 10.1007/JHEP11(2018)013 ALICE Collaboration, S. Acharya et al., Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC. JHEP 11, 013 (2018). https://doi.org/10.1007/JHEP11(2018)013. arXiv:1802.09145 [nucl-ex] 

  72. JHEP KJ Eskola 04 065 2009 10.1088/1126-6708/2009/04/065 K.J. Eskola, H. Paukkunen, C.A. Salgado, EPS09: A new generation of NLO and LO nuclear parton distribution functions. JHEP 04, 065 (2009). https://doi.org/10.1088/1126-6708/2009/04/065. arXiv:0902.4154 [hep-ph] 

  73. 10.1007/JHEP08(2016)078 ALICE Collaboration, J. Adam et al., Measurement of D-meson production versus multiplicity in p-Pb collisions at $$\sqrt{s_{{\rm NN}}} = 5.02\ \text{ TeV }$$. JHEP 08, 078 (2016). https://doi.org/10.1007/JHEP08(2016)078. arXiv:1602.07240 [nucl-ex] 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로