$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Genome-scale determination of 5´ and 3´ boundaries of RNA transcripts in Streptomyces genomes 원문보기

Scientific data, v.7 = v.7 no.1, 2020년, pp.436 -   

Lee, Yongjae (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea) ,  Lee, Namil (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea) ,  Hwang, Soonkyu (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea) ,  Kim, Woori (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea) ,  Jeong, Yujin (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea) ,  Cho, Suhyung (Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141 Republic of Korea) ,  Palsson, Bernhard O. (Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 USA) ,  Cho, Byung-Kwan (Department of Biologi)

Abstract AI-Helper 아이콘AI-Helper

Streptomyces species are gram-positive bacteria with GC-rich linear genomes and they serve as dominant reservoirs for producing clinically and industrially important secondary metabolites. Genome mining of Streptomyces revealed that each Streptomyces species typically encodes 20–50 secondary ...

참고문헌 (43)

  1. 1. Berdy J Bioactive microbial metabolites J Antibiot 2005 58 1 26 10.1038/ja.2005.1 

  2. 2. Demain AL Pharmaceutically active secondary metabolites of microorganisms Appl Microbiol Biotechnol 1999 52 455 463 10.1007/s002530051546 10570792 

  3. 3. Demain AL From natural products discovery to commercialization: a success story J Ind Microbiol Biotechnol 2006 33 486 495 10.1007/s10295-005-0076-x 16402247 

  4. 4. Silver LL Challenges of antibacterial discovery Clin Microbiol Rev 2011 24 71 109 10.1128/CMR.00030-10 21233508 

  5. 5. Bentley SD Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) Nature 2002 417 141 147 10.1038/417141a 12000953 

  6. 6. Nett M Ikeda H Moore BS Genomic basis for natural product biosynthetic diversity in the actinomycetes Nat Prod Rep 2009 26 1362 1384 10.1039/b817069j 19844637 

  7. 7. Ventola CL The antibiotic resistance crisis: part 1: causes and threats P T 2015 40 277 283 25859123 

  8. 8. Challis GL Hopwood DA Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species Proc Natl Acad Sci USA 2003 100 Suppl 2 14555 14561 10.1073/pnas.1934677100 12970466 

  9. 9. Bibb MJ Regulation of secondary metabolism in streptomycetes Curr Opin Microbiol 2005 8 208 215 10.1016/j.mib.2005.02.016 15802254 

  10. 10. Bursy J Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses Appl Environ Microbiol 2008 74 7286 7296 10.1128/AEM.00768-08 18849444 

  11. 11. Lee, N. et al . Iron competition triggers antibiotic biosynthesis in Streptomyces coelicolor during coculture with Myxococcus xanthus. ISME J , 10.1038/s41396-020-0594-6 (2020). 

  12. 12. Bervoets I Charlier D Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology FEMS Microbiol Rev 2019 43 304 339 10.1093/femsre/fuz001 30721976 

  13. 13. Browning DF Busby SJ The regulation of bacterial transcription initiation Nat Rev Microbiol 2004 2 57 65 10.1038/nrmicro787 15035009 

  14. 14. Cho BK The transcription unit architecture of the Escherichia coli genome Nat Biotechnol 2009 27 1043 1049 10.1038/nbt.1582 19881496 

  15. 15. Dar D Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria Science 2016 352 aad9822 10.1126/science.aad9822 27120414 

  16. 16. Hwang S Primary transcriptome and translatome analysis determines transcriptional and translational regulatory elements encoded in the Streptomyces clavuligerus genome Nucleic Acids Res 2019 47 6114 6129 10.1093/nar/gkz471 31131406 

  17. 17. Lee Y The Transcription Unit Architecture of Streptomyces lividans TK24 Front Microbiol 2019 10 2074 10.3389/fmicb.2019.02074 31555254 

  18. 18. Burg RW Avermectins, new family of potent anthelmintic agents: producing organism and fermentation Antimicrob Agents Chemother 1979 15 361 367 10.1128/aac.15.3.361 464561 

  19. 19. Paradkar A Clavulanic acid production by Streptomyces clavuligerus : biogenesis, regulation and strain improvement J Antibiot (Tokyo) 2013 66 411 420 10.1038/ja.2013.26 23612724 

  20. 20. Barreiro C Draft genome of Streptomyces tsukubaensis NRRL 18488, the producer of the clinically important immunosuppressant tacrolimus (FK506) J Bacteriol 2012 194 3756 3757 10.1128/JB.00692-12 22740677 

  21. 21. Waksman SA Streptomycin: background, isolation, properties, and utilization Science 1953 118 259 266 10.1126/science.118.3062.259 13089668 

  22. 22. Myronovskyi M Luzhetskyy A Heterologous production of small molecules in the optimized Streptomyces hosts Nat Prod Rep 2019 36 1281 1294 10.1039/c9np00023b 31453623 

  23. 23. Anne J Vrancken K Van Mellaert L Van Impe, J. & Bernaerts, K. Protein secretion biotechnology in Gram-positive bacteria with special emphasis on Streptomyces lividans Biochim Biophys Acta 2014 1843 1750 1761 10.1016/j.bbamcr.2013.12.023 24412306 

  24. 24. Jeong Y The dynamic transcriptional and translational landscape of the model antibiotic producer Streptomyces coelicolor A3(2) Nat Commun 2016 7 11605 10.1038/ncomms11605 27251447 

  25. 25. Dar D Sorek R High-resolution RNA 3′-ends mapping of bacterial Rho-dependent transcripts Nucleic Acids Res 2018 46 6797 6805 10.1093/nar/gky274 29669055 

  26. 26. Bailey TL MEME SUITE: tools for motif discovery and searching Nucleic Acids Res 2009 37 W202 208 10.1093/nar/gkp335 19458158 

  27. 27. Shine J Dalgarno L The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites Proc Natl Acad Sci USA 1974 71 1342 1346 10.1073/pnas.71.4.1342 4598299 

  28. 28. Morris DR Geballe AP Upstream open reading frames as regulators of mRNA translation Mol Cell Biol 2000 20 8635 8642 10.1128/mcb.20.23.8635-8642.2000 11073965 

  29. 29. Garst, A. D., Edwards, A. L. & Batey, R. T. Riboswitches: structures and mechanisms. Cold Spring Harb Perspect Biol 3 , 10.1101/cshperspect.a003533 (2011). 

  30. 30. Lee, Y. et al . Genome-scale determination of 5′ and 3′ boundaries of RNA transcripts in Streptomyces genomes. figshare 10.6084/m9.figshare.c.5044730 (2020). 

  31. 31. Lalanne JB Evolutionary Convergence of Pathway-Specific Enzyme Expression Stoichiometry Cell 2018 173 749 761 e738 10.1016/j.cell.2018.03.007 29606352 

  32. 32. 2020 NCBI Sequence Read Archive SRP158023 

  33. 33. 2019 NCBI Sequence Read Archive SRP188290 

  34. 34. 2019 NCBI Sequence Read Archive SRP103795 

  35. 35. 2020 European Nucleotide Archive PRJEB40918 

  36. 36. 2019 European Nucleotide Archive PRJEB31507 

  37. 37. 2020 European Nucleotide Archive PRJEB36379 

  38. 38. 2020 NCBI Sequence Read Archive SRX6937123 

  39. 39. 2020 NCBI Sequence Read Archive SRX6937124 

  40. 40. 2016 NCBI Sequence Read Archive SRP058830 

  41. 41. 2019 European Nucleotide Archive PRJEB34219 

  42. 42. Ewing B Hillier L Wendl MC Green P Base-calling of automated sequencer traces using phred. I. Accuracy assessment Genome Res 1998 8 175 185 10.1101/gr.8.3.175 9521921 

  43. 43. Blin K antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline Nucleic Acids Res 2019 47 W81 W87 10.1093/nar/gkz310 31032519 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로