최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기npj 2D materials and applications, v.4 no.1, 2020년, pp.43 -
Kun, Péter , Fülöp, Bálint , Dobrik, Gergely , Nemes-Incze, Péter , Lukács, István Endre , Csonka, Szabolcs , Hwang, Chanyong , Tapasztó, Levente
AbstractDetecting conductance quantization in graphene nanostructures turned out more challenging than expected. The observation of well-defined conductance plateaus through graphene nanoconstrictions so far has only been accessible in the highest quality suspended or h-BN encapsulated devices. Howe...
Nature KS Novoselov 438 197 2005 10.1038/nature04233 Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005).
Nature Y Zhang 438 201 2005 10.1038/nature04235 Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201-204 (2005).
Phys. Rev. Lett. SV Morozov 100 016602 2008 10.1103/PhysRevLett.100.016602 Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008).
Science F Miao 317 1530 2007 10.1126/science.1144359 Miao, F. et al. Phase-coherent transport in graphene quantum billiards. Science 317, 1530-1533 (2007).
Nano Lett. C Stampfer 8 2378 2008 10.1021/nl801225h Stampfer, C. et al. Tunable graphene single electron transistor. Nano Lett. 8, 2378-2383 (2008).
Nature J Baringhaus 506 349 2014 10.1038/nature12952 Baringhaus, J. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349-354 (2014).
Appl. Phys. Rev. D Bischoff 2 031301 2015 10.1063/1.4926448 Bischoff, D. et al. Localized charge carriers in graphene nanodevices. Appl. Phys. Rev. 2, 031301 (2015).
Phys. Rev. Lett. BJ van Wees 60 848 1988 10.1103/PhysRevLett.60.848 van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848-850 (1988).
J. Phys. C. DA Wharam 21 L209 1988 10.1088/0022-3719/21/8/002 Wharam, D. A. et al. One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C. 21, L209 (1988).
Nature Y Zhang 459 820 2009 10.1038/nature08105 Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823 (2009).
Nano Lett. H Overweg 18 553 2017 10.1021/acs.nanolett.7b04666 Overweg, H. et al. Electrostatically induced quantum point contacts in bilayer graphene. Nano Lett. 18, 553-559 (2017).
Nano Lett. H Lee 18 5961 2018 10.1021/acs.nanolett.8b02750 Lee, H. et al. Edge-limited valley-preserved transport in Quasi-1D constriction of bilayer graphene. Nano Lett. 18, 5961 (2018).
Phys. Rev. Lett. L Banszerus 124 177701 2020 10.1103/PhysRevLett.124.177701 Banszerus, L. et al. Observation of the spin-orbit gap in bilayer graphene by one-dimensional ballistic transport. Phys. Rev. Lett. 124, 177701 (2020).
Proc. Natl Acad. Sci. USA JS Alden 110 11256 2013 10.1073/pnas.1309394110 Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256-11260 (2013).
Phys. Rev. Lett. S Nakaharai 107 036602 2011 10.1103/PhysRevLett.107.036602 Nakaharai, S., Williams, J. R. & Marcus, C. M. Gate-defined graphene quantum point contact in the quantum hall regime. Phys. Rev. Lett. 107, 036602 (2011).
Phys. Rev. B D Bischoff 90 115405 2014 10.1103/PhysRevB.90.115405 Bischoff, D., Libisch, F., Burgdörfer, J., Ihn, T. & Ensslin, K. Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate. Phys. Rev. B 90, 115405 (2014).
Nat. Phys. N Tombros 7 697 2011 10.1038/nphys2009 Tombros, N. et al. Quantized conductance of a suspended graphene nanoconstriction. Nat. Phys. 7, 697-700 (2011).
Nat. Nanotechnol. A Kinikar 12 564 2017 10.1038/nnano.2017.24 Kinikar, A. et al. Quantized edge modes in atomic-scale point contacts in graphene. Nat. Nanotechnol. 12, 564 (2017).
Phys. Rev. Lett. MY Han 98 206805 2007 10.1103/PhysRevLett.98.206805 Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).
Semicond. Sci. Tech. F Molitor 25 034002 2010 10.1088/0268-1242/25/3/034002 Molitor, F. et al. Energy and transport gaps in etched graphene nanoribbons. Semicond. Sci. Tech. 25, 034002 (2010).
Nat. Commun. B Terrés 7 2016 10.1038/ncomms11528 Terrés, B. et al. Size quantization of Dirac fermions in graphene constrictions. Nat. Commun. 7, 11528 (2016).
Ann. Phys. S Somanchi 529 1700082 2017 10.1002/andp.201700082 Somanchi, S. et al. From diffusive to ballistic transport in etched graphene constrictions and nanoribbons. Ann. Phys. 529, 1700082 (2017).
Sci. Rep. V Clericò 9 2019 10.1038/s41598-019-50098-z Clericò, V. et al. Quantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene. Sci. Rep. 9, 13572 (2019).
Nat. Commun. JM Caridad 9 2018 10.1038/s41467-018-03064-8 Caridad, J. M. et al. Conductance quantization suppression in the quantum Hall regime. Nat. Commun. 9, 659 (2018).
Appl. Phys. Lett. L Weng 93 093107 2008 10.1063/1.2976429 Weng, L., Zhang, L., Chen, Y. P. & Rokhinson, L. P. Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett. 93, 093107 (2008).
Appl. Phys. Lett. S Masubuchi 94 082107 2009 10.1063/1.3089693 Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl. Phys. Lett. 94, 082107 (2009).
Ann. Phys. M Morgenstern 529 1700018 2017 10.1002/andp.201700018 Morgenstern, M., Freitag, N., Nent, A., Nemes-Incze, P. & Liebmann, M. Graphene quantum dots probed by scanning tunneling microscopy. Ann. Phys. 529, 1700018 (2017).
Nanotechnology B Vasic 24 0153303 2013 10.1088/0957-4484/24/1/015303 Vasic, B. et al. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography. Nanotechnology 24, 0153303 (2013).
Appl. Phys. Lett. Y He 97 133301 2010 10.1063/1.3493647 He, Y. et al. Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography. Appl. Phys. Lett. 97, 133301 (2010).
Nat. Nanotechnol. L Tapasztó 3 397 2008 10.1038/nnano.2008.149 Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397-401 (2008).
Nature GZ Magda 514 608 2014 10.1038/nature13831 Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608-611 (2014).
Science C Lee 328 76 2010 10.1126/science.1184167 Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76-80 (2010).
Science C Lee 321 385 2008 10.1126/science.1157996 Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008).
Sci. Rep. P Nemes-Incze 7 2017 10.1038/s41598-017-03332-5 Nemes-Incze, P. et al. Preparing local strain patterns in graphene by atomic force microscope based indentation. Sci. Rep. 7, 3035 (2017).
Nat. Commun. K Kim 4 2013 10.1038/ncomms3723 Kim, K. et al. Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723 (2013).
Phys. Rev. B J Kotakoski 85 195447 2012 10.1103/PhysRevB.85.195447 Kotakoski, J. & Meyer, J. Mechanical properties of polycrystalline graphene based on a realistic atomistic model. Phys. Rev. B 85, 195447 (2012).
Nano Lett. M Ishigami 7 1643 2007 10.1021/nl070613a Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 7, 1643-1648 (2007).
Appl. Phys. Lett. AM Goossens 100 073110 2012 10.1063/1.3685504 Goossens, A. M. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).
J. Appl. Phys. N Lindvall 111 064904 2012 10.1063/1.3695451 Lindvall, N., Kalabukhov, A. & Yurgens, A. Cleaning graphene using atomic force microscope. J. Appl. Phys. 111, 064904 (2012).
Phys. Rev. B NMR Peres 73 195411 2006 10.1103/PhysRevB.73.195411 Peres, N. M. R., Castro Neto, A. H. & Guinea, F. Conductance quantization in mesoscopic graphene. Phys. Rev. B 73, 195411 (2006).
Phys. Rev. B MHD Guimaraes 85 075424 2012 10.1103/PhysRevB.85.075424 Guimaraes, M. H. D., Shevtsov, O., Waintal, X. & van Wees, B. J. From quantum confinement to quantum Hall effect in graphene nanostructures. Phys. Rev. B 85, 075424 (2012).
Nat. Commun. K Zimmermann 8 2017 10.1038/ncomms14983 Zimmermann, K. et al. Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices. Nat. Commun. 8, 14983 (2017).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.