$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Robust quantum point contact operation of narrow graphene constrictions patterned by AFM cleavage lithography 원문보기

npj 2D materials and applications, v.4 no.1, 2020년, pp.43 -   

Kun, Péter ,  Fülöp, Bálint ,  Dobrik, Gergely ,  Nemes-Incze, Péter ,  Lukács, István Endre ,  Csonka, Szabolcs ,  Hwang, Chanyong ,  Tapasztó, Levente

Abstract AI-Helper 아이콘AI-Helper

AbstractDetecting conductance quantization in graphene nanostructures turned out more challenging than expected. The observation of well-defined conductance plateaus through graphene nanoconstrictions so far has only been accessible in the highest quality suspended or h-BN encapsulated devices. Howe...

참고문헌 (43)

  1. Nature KS Novoselov 438 197 2005 10.1038/nature04233 Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197-200 (2005). 

  2. Nature Y Zhang 438 201 2005 10.1038/nature04235 Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201-204 (2005). 

  3. Phys. Rev. Lett. SV Morozov 100 016602 2008 10.1103/PhysRevLett.100.016602 Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100, 016602 (2008). 

  4. Science F Miao 317 1530 2007 10.1126/science.1144359 Miao, F. et al. Phase-coherent transport in graphene quantum billiards. Science 317, 1530-1533 (2007). 

  5. Nano Lett. C Stampfer 8 2378 2008 10.1021/nl801225h Stampfer, C. et al. Tunable graphene single electron transistor. Nano Lett. 8, 2378-2383 (2008). 

  6. Nature J Baringhaus 506 349 2014 10.1038/nature12952 Baringhaus, J. et al. Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature 506, 349-354 (2014). 

  7. Appl. Phys. Rev. D Bischoff 2 031301 2015 10.1063/1.4926448 Bischoff, D. et al. Localized charge carriers in graphene nanodevices. Appl. Phys. Rev. 2, 031301 (2015). 

  8. Solid State Phys. CWJ Beenakker 44 1 1991 10.1016/S0081-1947(08)60091-0 Beenakker, C. W. J. & van Houten, H. Quantum transport in semiconductor nanostructures. Solid State Phys. 44, 1-228 (1991). 

  9. Phys. Rev. Lett. BJ van Wees 60 848 1988 10.1103/PhysRevLett.60.848 van Wees, B. J. et al. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett. 60, 848-850 (1988). 

  10. J. Phys. C. DA Wharam 21 L209 1988 10.1088/0022-3719/21/8/002 Wharam, D. A. et al. One-dimensional transport and the quantisation of the ballistic resistance. J. Phys. C. 21, L209 (1988). 

  11. Nature Y Zhang 459 820 2009 10.1038/nature08105 Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820-823 (2009). 

  12. Nano Lett. H Overweg 18 553 2017 10.1021/acs.nanolett.7b04666 Overweg, H. et al. Electrostatically induced quantum point contacts in bilayer graphene. Nano Lett. 18, 553-559 (2017). 

  13. Nano Lett. H Lee 18 5961 2018 10.1021/acs.nanolett.8b02750 Lee, H. et al. Edge-limited valley-preserved transport in Quasi-1D constriction of bilayer graphene. Nano Lett. 18, 5961 (2018). 

  14. Phys. Rev. Lett. L Banszerus 124 177701 2020 10.1103/PhysRevLett.124.177701 Banszerus, L. et al. Observation of the spin-orbit gap in bilayer graphene by one-dimensional ballistic transport. Phys. Rev. Lett. 124, 177701 (2020). 

  15. Proc. Natl Acad. Sci. USA JS Alden 110 11256 2013 10.1073/pnas.1309394110 Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256-11260 (2013). 

  16. Phys. Rev. Lett. S Nakaharai 107 036602 2011 10.1103/PhysRevLett.107.036602 Nakaharai, S., Williams, J. R. & Marcus, C. M. Gate-defined graphene quantum point contact in the quantum hall regime. Phys. Rev. Lett. 107, 036602 (2011). 

  17. Phys. Rev. B D Bischoff 90 115405 2014 10.1103/PhysRevB.90.115405 Bischoff, D., Libisch, F., Burgdörfer, J., Ihn, T. & Ensslin, K. Characterizing wave functions in graphene nanodevices: Electronic transport through ultrashort graphene constrictions on a boron nitride substrate. Phys. Rev. B 90, 115405 (2014). 

  18. Nat. Phys. N Tombros 7 697 2011 10.1038/nphys2009 Tombros, N. et al. Quantized conductance of a suspended graphene nanoconstriction. Nat. Phys. 7, 697-700 (2011). 

  19. Nat. Nanotechnol. A Kinikar 12 564 2017 10.1038/nnano.2017.24 Kinikar, A. et al. Quantized edge modes in atomic-scale point contacts in graphene. Nat. Nanotechnol. 12, 564 (2017). 

  20. Phys. Rev. Lett. MY Han 98 206805 2007 10.1103/PhysRevLett.98.206805 Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007). 

  21. Semicond. Sci. Tech. F Molitor 25 034002 2010 10.1088/0268-1242/25/3/034002 Molitor, F. et al. Energy and transport gaps in etched graphene nanoribbons. Semicond. Sci. Tech. 25, 034002 (2010). 

  22. Nat. Commun. B Terrés 7 2016 10.1038/ncomms11528 Terrés, B. et al. Size quantization of Dirac fermions in graphene constrictions. Nat. Commun. 7, 11528 (2016). 

  23. Ann. Phys. S Somanchi 529 1700082 2017 10.1002/andp.201700082 Somanchi, S. et al. From diffusive to ballistic transport in etched graphene constrictions and nanoribbons. Ann. Phys. 529, 1700082 (2017). 

  24. Sci. Rep. V Clericò 9 2019 10.1038/s41598-019-50098-z Clericò, V. et al. Quantum nanoconstrictions fabricated by cryo-etching in encapsulated graphene. Sci. Rep. 9, 13572 (2019). 

  25. Nat. Commun. JM Caridad 9 2018 10.1038/s41467-018-03064-8 Caridad, J. M. et al. Conductance quantization suppression in the quantum Hall regime. Nat. Commun. 9, 659 (2018). 

  26. Appl. Phys. Lett. L Weng 93 093107 2008 10.1063/1.2976429 Weng, L., Zhang, L., Chen, Y. P. & Rokhinson, L. P. Atomic force microscope local oxidation nanolithography of graphene. Appl. Phys. Lett. 93, 093107 (2008). 

  27. Appl. Phys. Lett. S Masubuchi 94 082107 2009 10.1063/1.3089693 Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Appl. Phys. Lett. 94, 082107 (2009). 

  28. Ann. Phys. M Morgenstern 529 1700018 2017 10.1002/andp.201700018 Morgenstern, M., Freitag, N., Nent, A., Nemes-Incze, P. & Liebmann, M. Graphene quantum dots probed by scanning tunneling microscopy. Ann. Phys. 529, 1700018 (2017). 

  29. Nanotechnology B Vasic 24 0153303 2013 10.1088/0957-4484/24/1/015303 Vasic, B. et al. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography. Nanotechnology 24, 0153303 (2013). 

  30. Appl. Phys. Lett. Y He 97 133301 2010 10.1063/1.3493647 He, Y. et al. Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography. Appl. Phys. Lett. 97, 133301 (2010). 

  31. Nat. Nanotechnol. L Tapasztó 3 397 2008 10.1038/nnano.2008.149 Tapasztó, L., Dobrik, G., Lambin, P. & Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3, 397-401 (2008). 

  32. Nature GZ Magda 514 608 2014 10.1038/nature13831 Magda, G. Z. et al. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608-611 (2014). 

  33. Science C Lee 328 76 2010 10.1126/science.1184167 Lee, C. et al. Frictional characteristics of atomically thin sheets. Science 328, 76-80 (2010). 

  34. Science C Lee 321 385 2008 10.1126/science.1157996 Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385-388 (2008). 

  35. Sci. Rep. P Nemes-Incze 7 2017 10.1038/s41598-017-03332-5 Nemes-Incze, P. et al. Preparing local strain patterns in graphene by atomic force microscope based indentation. Sci. Rep. 7, 3035 (2017). 

  36. Nat. Commun. K Kim 4 2013 10.1038/ncomms3723 Kim, K. et al. Atomically perfect torn graphene edges and their reversible reconstruction. Nat. Commun. 4, 2723 (2013). 

  37. Phys. Rev. B J Kotakoski 85 195447 2012 10.1103/PhysRevB.85.195447 Kotakoski, J. & Meyer, J. Mechanical properties of polycrystalline graphene based on a realistic atomistic model. Phys. Rev. B 85, 195447 (2012). 

  38. Nano Lett. M Ishigami 7 1643 2007 10.1021/nl070613a Ishigami, M., Chen, J. H., Cullen, W. G., Fuhrer, M. S. & Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 7, 1643-1648 (2007). 

  39. Appl. Phys. Lett. AM Goossens 100 073110 2012 10.1063/1.3685504 Goossens, A. M. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012). 

  40. J. Appl. Phys. N Lindvall 111 064904 2012 10.1063/1.3695451 Lindvall, N., Kalabukhov, A. & Yurgens, A. Cleaning graphene using atomic force microscope. J. Appl. Phys. 111, 064904 (2012). 

  41. Phys. Rev. B NMR Peres 73 195411 2006 10.1103/PhysRevB.73.195411 Peres, N. M. R., Castro Neto, A. H. & Guinea, F. Conductance quantization in mesoscopic graphene. Phys. Rev. B 73, 195411 (2006). 

  42. Phys. Rev. B MHD Guimaraes 85 075424 2012 10.1103/PhysRevB.85.075424 Guimaraes, M. H. D., Shevtsov, O., Waintal, X. & van Wees, B. J. From quantum confinement to quantum Hall effect in graphene nanostructures. Phys. Rev. B 85, 075424 (2012). 

  43. Nat. Commun. K Zimmermann 8 2017 10.1038/ncomms14983 Zimmermann, K. et al. Tunable transmission of quantum Hall edge channels with full degeneracy lifting in split-gated graphene devices. Nat. Commun. 8, 14983 (2017). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로