$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Characterization of Dielectric Relaxation Process by Impedance Spectroscopy for Polymers: Nitrile Butadiene Rubber and Ethylene Propylene Diene Monomer 원문보기

Journal of spectroscopy, v.2020, 2020년, pp.1 - 15  

Jung, Jae Kap (Center for Energy Materials Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea) ,  Moon, Young Il (Department of Electrical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea) ,  Kim, Gyung Hyun (Department of Physics and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea) ,  Tak, Nae Hyung (Center for Energy Materials Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea) ,  Palacio, Carlos

Abstract AI-Helper 아이콘AI-Helper

We invented a dispersion analysis program that analyzes the relaxation processes from dielectric permittivity based on a combination of the Havriliak-Negami and conductivity contribution functions. By applying the created program to polymers such as nitrile butadiene rubber (NBR) and ethylene propyl...

참고문헌 (46)

  1. Yang, Jiann C., Hnetkovsky, Edward, Rinehart, Doris, Fernandez, Marco, Gonzalez, Felix, Borowsky, Joseph. Performance of metal and polymeric O-ring seals during beyond-design-basis thermal conditions. Polymer testing, vol.58, 135-141.

  2. Polymers for Hydrogen Infrastructure and Vehicle Fuel Systems: Applications, Properties, and Gap Analysis R. R. Barth 2013 10.2172/1104755 

  3. Pehlivan-DavisS.Polymer electrolyte membrane (PEM) fuel cell seals durability2015Loughborough, UKLoughborough UniversityPh D. Dissertation 

  4. Proceedings of the ASME 2016 Pressure Vessels and Piping Conference PVP 2016 N. C. Menon 2016 

  5. Fujiwara, H., Ono, H., Nishimura, S.. Degradation behavior of acrylonitrile butadiene rubber after cyclic high-pressure hydrogen exposure. International journal of hydrogen energy, vol.40, no.4, 2025-2034.

  6. International Symposium of Hydrogen Polymers Team S. Nishimura 2017 

  7. Wang, W. G., Li, X. Y.. Impedance and dielectric relaxation spectroscopy studies on the calcium modified Na0.5Bi0.44Ca0.06TiO2.97 ceramics. AIP advances, vol.7, no.12, 125318-.

  8. Dielectric Spectroscopy of Polymeric Materials J. P. Runt 1997 

  9. Broadband Dielectric Spectroscopy F. Kremer 2003 10.1007/978-3-642-56120-7 

  10. Electrical Properties of Polymers C. Ku 1987 

  11. Fernández-Sánchez, César, McNeil, Calum J.. Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. Trends in analytical chemistry : TrAC, vol.24, no.1, 37-48.

  12. Dastan, D., Banpurkar, A.. Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. Journal of materials science. Materials in electronics, vol.28, no.4, 3851-3859.

  13. Dastan, Davoud, Gosavi, Suresh W., Chaure, Nandu B.. Studies on Electrical Properties of Hybrid Polymeric Gate Dielectrics for Field Effect Transistors. Macromolecular symposia, vol.347, no.1, 81-86.

  14. Williams, Graham. Dipole relaxation in polyethyl methacrylate and polyethyl acrylate as a function of frequency, temperature and pressure. The α, β and αβ relaxations. Transactions of the Faraday Society, vol.62, 2091-2102.

  15. Brand, R., Lunkenheimer, P., Schneider, U., Loidl, A.. Excess wing in the dielectric loss of glass-forming ethanol: A relaxation process. Physical review. B, Condensed matter and materials physics, vol.62, no.13, 8878-8883.

  16. Smith, Grant D., Bedrov, Dmitry. Relationship between the α- and β-relaxation processes in amorphous polymers: Insight from atomistic molecular dynamics simulations of 1,4-polybutadiene melts and blends. Journal of polymer science Part B, Polymer physics, vol.45, no.6, 627-643.

  17. Dastan, Davoud. Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol-gel. Applied physics. A, Materials science & processing, vol.123, no.11, 699-.

  18. Pietrasik, Joanna, Gaca, Magdalena, Zaborski, Marian, Okrasa, Lidia, Boiteux, Gisèle, Gain, Olivier. Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles. European polymer journal, vol.45, no.12, 3317-3325.

  19. Chailan, J.-F., Boiteux, G., Chauchard, J., Pinel, B., Seytre, G.. Viscoelastic and dielectric study of thermally aged ethylene—propylene diene monomer (EPDM) compounds. Polymer degradation and stability, vol.47, no.3, 397-403.

  20. Zhang, Fengshun, Zhao, Qi, Liu, Tao, Lei, Yajie, Chen, Chao. Preparation and relaxation dynamics of ethylene-propylene-diene rubber/clay nanocomposites with crosslinking interfacial design. Journal of applied polymer science, vol.135, no.1, 45553-.

  21. Dielectric Relaxation Phenomena in Complex Materials Y. Feldman 2006 10.1002/0471790265.ch1 

  22. Schlosser, E., Sch�nhals, A.. Recent development in dielectric relaxation spectroscopy of polymers. Colloid and polymer science, vol.267, no.11, 963-969.

  23. Jung, Jae Kap, Moon, Young Il, Chung, Ki Soo, Kim, Kyu-Tae. Development of a Program for Analyzing Dielectric Relaxation and Its Application to Polymers: Nitrile Butadiene Rubber. Macromolecular research, vol.28, no.6, 596-604.

  24. Cole, Kenneth S., Cole, Robert H.. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. The Journal of chemical physics, vol.9, no.4, 341-351.

  25. Davidson, D. W., Cole, R. H.. Dielectric Relaxation in Glycerol, Propylene Glycol, and n-Propanol. The Journal of chemical physics, vol.19, no.12, 1484-1490.

  26. Havriliak, S., Negami, S.. A complex plane analysis of α‐dispersions in some polymer systems. Journal of polymer science. Part C, Polymer symposia, vol.14, no.1, 99-117.

  27. Jung, J.K., Kim, I.G., Kim, K.T.. Evaluation of hydrogen permeation characteristics in rubbery polymers. Current applied physics : the official journal of the Korean Physical Society, vol.21, 43-49.

  28. Schönhals, Andreas, Kremer, Friedrich, Hofmann, Achim, Fischer, Erhard W., Schlosser, Eckard. Anomalies in the scaling of the dielectric α-relaxation. Physical review letters, vol.70, no.22, 3459-3462.

  29. Langer, James. The mysterious glass transition. Physics today, vol.60, no.2, 8-9.

  30. Garca-Coln, L. S., del Castillo, L. F., Goldstein, Patricia. Theoretical basis for the Vogel-Fulcher-Tammann equation. Physical review. B, Condensed matter, vol.40, no.10, 7040-7044.

  31. Physikalische Zeitschrift H. Vogel 22 645 1921 Das temperaturabha?ngigkeitsgesetz der viskosita?t von flu?ssigkeiten 

  32. Fulcher, Gordon S.. ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES. Journal of the American Ceramic Society, vol.8, no.6, 339-355.

  33. Tammann, G., Hesse, W.. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Zeitschrift für anorganische und allgemeine Chemie, vol.156, no.1, 245-257.

  34. 10.1002/(sici)1099-0488(19991215)37:24<3494::aid-polb10>3.0.co;2-v 

  35. 10.1515/zpch-1889-0108 

  36. O’Connell, Paul A., McKenna, Gregory B.. Arrhenius-type temperature dependence of the segmental relaxation below Tg. The Journal of chemical physics, vol.110, no.22, 11054-11060.

  37. Samet, M., Levchenko, V., Boiteux, G., Seytre, G., Kallel, A., Serghei, A.. Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. The Journal of chemical physics, vol.142, no.19, 194703-.

  38. Xia, Xiaodong, Zhong, Zheng, Weng, George J.. Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of materials : an international journal, vol.109, 42-50.

  39. Paranjape, Nachiket, Mandadapu, Praphulla Chandra, Wu, Gang, Lin, Haiqing. Highly-branched cross-linked poly(ethylene oxide) with enhanced ionic conductivity. Polymer, vol.111, 1-8.

  40. Ribes, M, Taillades, G, Pradel, A. Non-Arrhenius conductivity in glassy and crystallized fast ion conductors : A manifestation of cationic disorder. Solid state ionics, vol.105, no.1, 159-165.

  41. Wieczorek, W.. Temperature dependence of conductivity of mixed-phase composite polymer solid electrolytes. Materials science & engineering B, Solid-state materials for advanced technology, vol.15, no.2, 108-114.

  42. Theory of Dielectric Polarization C. J. F. Bottcher 1973 

  43. Theory of Dielectric Polarization C. J. F. Bottcher 1978 

  44. Polymer Testing E. V. Bystritskaya 32 2 197 2013 10.1016/j.polymertesting.2012.10.013 TGA application for optimising the accelerated aging conditions and predictions of thermal aging of rubber 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로