$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] The MAO Inhibitor Tranylcypromine Alters LPS- and Aβ-Mediated Neuroinflammatory Responses in Wild-type Mice and a Mouse Model of AD 원문보기

Cells, v.9 no.9, 2020년, pp.1982 -   

Park, HyunHee (Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea) ,  Han, Kyung-Min (hyunhee16hh@gmail.com (H.P.)) ,  Jeon, Hyongjun (hkm5344@kbri.re.kr (K.-M.H.)) ,  Lee, Ji-Soo (newace16@kbri.re.kr (H.J.)) ,  Lee, Hyunju (su943c@kbri.re.kr (J.-S.L.)) ,  Jeon, Seong Gak (hjlee@kbri.re.kr (H.L.)) ,  Park, Jin-Hee (jsg7394@kbri.re.kr (S.G.J.)) ,  Kim, Yu Gyung (Mingmeng1005@gmail.com (J.-H.P.)) ,  Lin, Yuxi (cosmos0468@gmail.com (Y.G.K.)) ,  Lee, Young-Ho (Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Korea) ,  Jeong, Yun Ha (hyunhee16hh@gmail.com (H.P.)) ,  Hoe, Hyang-Sook (hkm5344@kbri.re.kr (K.-M.H.))

Abstract AI-Helper 아이콘AI-Helper

Monoamine oxidase (MAO) has been implicated in neuroinflammation, and therapies targeting MAO are of interest for neurodegenerative diseases. The small-molecule drug tranylcypromine, an inhibitor of MAO, is currently used as an antidepressant and in the treatment of cancer. However, whether tranylcy...

Keyword

참고문헌 (52)

  1. 1. Querfurth H.W. LaFerla F.M. Alzheimer’s disease N. Engl. J. Med. 2010 362 329 344 10.1056/NEJMra0909142 20107219 

  2. 2. Winblad B. Amouyel P. Andrieu S. Ballard C. Brayne C. Brodaty H. Cedazo-Minguez A. Dubois B. Edvardsson D. Feldman H. Defeating Alzheimer’s disease and other dementias: A priority for European science and society Lancet Neurol. 2016 15 455 532 10.1016/S1474-4422(16)00062-4 26987701 

  3. 3. Bachiller S. Jimenez-Ferrer I. Paulus A. Yang Y. Swanberg M. Deierborg T. Boza-Serrano A. Microglia in Neurological Diseases: A Road Map to Brain-Disease Dependent-Inflammatory Response Front. Cell Neurosci. 2018 12 488 10.3389/fncel.2018.00488 30618635 

  4. 4. Heneka M.T. Carson M.J. El Khoury J. Landreth G.E. Brosseron F. Feinstein D.L. Jacobs A.H. Wyss-Coray T. Vitorica J. Ransohoff R.M. Neuroinflammation in Alzheimer’s disease Lancet Neurol. 2015 14 388 405 10.1016/S1474-4422(15)70016-5 25792098 

  5. 5. Koenigsknecht-Talboo J. Landreth G.E. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines J. Neurosci. 2005 25 8240 8249 10.1523/JNEUROSCI.1808-05.2005 16148231 

  6. 6. Lu Y.C. Yeh W.C. Ohashi P.S. LPS/TLR4 signal transduction pathway Cytokine 2008 42 145 151 10.1016/j.cyto.2008.01.006 18304834 

  7. 7. Bielecka A.M. Paul-Samojedny M. Obuchowicz E. Moclobemide exerts anti-inflammatory effect in lipopolysaccharide-activated primary mixed glial cell culture Naunyn Schmiedebergs Arch. Pharm. 2010 382 409 417 10.1007/s00210-010-0535-4 

  8. 8. Naoi M. Maruyama W. Akao Y. Yi H. Yamaoka Y. Involvement of type A monoamine oxidase in neurodegeneration: Regulation of mitochondrial signaling leading to cell death or neuroprotection J. Neural. Transm. Suppl. 2006 10.1007/978-3-211-33328-0_8 

  9. 9. Rodriguez S. Ito T. He X.J. Uchida K. Nakayama H. Resistance of the golden hamster to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity is not only related with low levels of cerebral monoamine oxidase-B Exp. Toxicol. Pathol. 2013 65 127 133 10.1016/j.etp.2011.06.010 21795029 

  10. 10. Zheng H. Youdim M.B. Fridkin M. Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy Acs. Chem. Biol. 2010 5 603 610 10.1021/cb900264w 20455574 

  11. 11. Youdim M.B. Lavie L. Selective MAO-A and B inhibitors, radical scavengers and nitric oxide synthase inhibitors in Parkinson’s disease Life Sci. 1994 55 2077 2082 10.1016/0024-3205(94)00388-2 7527888 

  12. 12. Youdim M.B. Bakhle Y.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness Br. J. Pharm. 2006 147 Suppl. 1 287 296 10.1038/sj.bjp.0706464 16402116 

  13. 13. Cummings J.L. Lewy body diseases with dementia: Pathophysiology and treatment Brain Cogn. 1995 28 266 280 10.1006/brcg.1995.1257 8546854 

  14. 14. Delumeau J.C. Bentue-Ferrer D. Gandon J.M. Amrein R. Belliard S. Allain H. Monoamine oxidase inhibitors, cognitive functions and neurodegenerative diseases J. Neural. Transm. Suppl. 1994 41 259 266 10.1007/978-3-7091-9324-2_34 7931235 

  15. 15. Grailhe R. Cardona A. Even N. Seif I. Changeux J.P. Cloez-Tayarani I. Regional changes in the cholinergic system in mice lacking monoamine oxidase A Brain Res. Bull. 2009 78 283 289 10.1016/j.brainresbull.2008.12.004 19111597 

  16. 16. Huang L. Lu C. Sun Y. Mao F. Luo Z. Su T. Jiang H. Shan W. Li X. Multitarget-directed benzylideneindanone derivatives: Anti-beta-amyloid (Abeta) aggregation, antioxidant, metal chelation, and monoamine oxidase B (MAO-B) inhibition properties against Alzheimer’s disease J. Med. Chem. 2012 55 8483 8492 10.1021/jm300978h 22978824 

  17. 17. Zheng H. Fridkin M. Youdim M.B. From antioxidant chelators to site-activated multi-target chelators targeting hypoxia inducing factor, beta-amyloid, acetylcholinesterase and monoamine oxidase A/B Mini Rev. Med. Chem. 2012 12 364 370 10.2174/138955712800493898 22303968 

  18. 18. Cacabelos R. Torrellas C. Epigenetic drug discovery for Alzheimer’s disease Expert Opin. Drug Discov. 2014 9 1059 1086 10.1517/17460441.2014.930124 24989365 

  19. 19. Ji Y.Y. Lin S.D. Wang Y.J. Su M.B. Zhang W. Gunosewoyo H. Yang F. Li J. Tang J. Zhou Y.B. Tying up tranylcypromine: Novel selective histone lysine specific demethylase 1 (LSD1) inhibitors Eur. J. Med. Chem. 2017 141 101 112 10.1016/j.ejmech.2017.09.073 29031059 

  20. 20. Gooden D.M. Schmidt D.M. Pollock J.A. Kabadi A.M. McCafferty D.G. Facile synthesis of substituted trans-2-arylcyclopropylamine inhibitors of the human histone demethylase LSD1 and monoamine oxidases A and B Bioorg. Med. Chem. Lett. 2008 18 3047 3051 10.1016/j.bmcl.2008.01.003 18242989 

  21. 21. Barth J. Abou-El-Ardat K. Dalic D. Kurrle N. Maier A.M. Mohr S. Schutte J. Vassen L. Greve G. Schulz-Fincke J. LSD1 inhibition by tranylcypromine derivatives interferes with GFI1-mediated repression of PU.1 target genes and induces differentiation in AML Leukemia 2019 33 1411 1426 10.1038/s41375-018-0375-7 30679800 

  22. 22. Liu Z. Yang K. Yan X. Wang T. Jiang T. Zhou Q. Qi J. Qian N. Zhou H. Chen B. The effects of tranylcypromine on osteoclastogenesis in vitro and in vivo Faseb J. 2019 33 9828 9841 10.1096/fj.201802242RR 31291555 

  23. 23. Tomaz V.S. Chaves Filho A.J.M. Cordeiro R.C. Juca P.M. Soares M.V.R. Barroso P.N. Cristino L.M.F. Jiang W. Teixeira A.L. de Lucena D.F. Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression J. Affect. Disord. 2020 268 188 200 10.1016/j.jad.2020.03.022 32174477 

  24. 24. Caraci F. Pappalardo G. Basile L. Giuffrida A. Copani A. Tosto R. Sinopoli A. Giuffrida M.L. Pirrone E. Drago F. Neuroprotective effects of the monoamine oxidase inhibitor tranylcypromine and its amide derivatives against Abeta(1-42)-induced toxicity Eur J. Pharm. 2015 764 256 263 10.1016/j.ejphar.2015.07.015 26162702 

  25. 25. Ryu K.Y. Lee H.J. Woo H. Kang R.J. Han K.M. Park H. Lee S.M. Lee J.Y. Jeong Y.J. Nam H.W. Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling J. Neuroinflammation 2019 16 190 10.1186/s12974-019-1561-x 31655606 

  26. 26. Lee J.Y. Nam J.H. Nam Y. Nam H.Y. Yoon G. Ko E. Kim S.B. Bautista M.R. Capule C.C. Koyanagi T. The small molecule CA140 inhibits the neuroinflammatory response in wild-type mice and a mouse model of AD J. Neuroinflammation 2018 15 286 10.1186/s12974-018-1321-3 30309372 

  27. 27. Nam H.Y. Nam J.H. Yoon G. Lee J.Y. Nam Y. Kang H.J. Cho H.J. Kim J. Hoe H.S. Ibrutinib suppresses LPS-induced neuroinflammatory responses in BV2 microglial cells and wild-type mice J. Neuroinflammation 2018 15 271 10.1186/s12974-018-1308-0 30231870 

  28. 28. Kang C.H. Jayasooriya R.G. Dilshara M.G. Choi Y.H. Jeong Y.K. Kim N.D. Kim G.Y. Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-kappaB activation and ERK phosphorylation Food Chem. Toxicol. 2012 50 4270 4276 10.1016/j.fct.2012.08.041 22974838 

  29. 29. Reed A.L. Happe H.K. Petty F. Bylund D.B. Juvenile rats in the forced-swim test model the human response to antidepressant treatment for pediatric depression Psychopharmacol. (Berl) 2008 197 433 441 10.1007/s00213-007-1052-0 

  30. 30. Villegier A.S. Gallager B. Heston J. Belluzzi J.D. Leslie F.M. Age influences the effects of nicotine and monoamine oxidase inhibition on mood-related behaviors in rats Psychopharmacol. (Berl) 2010 208 593 601 10.1007/s00213-009-1760-8 

  31. 31. Villegier A.S. Salomon L. Granon S. Changeux J.P. Belluzzi J.D. Leslie F.M. Tassin J.P. Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine Neuropsychopharmacology 2006 31 1704 1713 10.1038/sj.npp.1300987 16395299 

  32. 32. Sturza A. Popoiu C.M. Ionica M. Duicu O.M. Olariu S. Muntean D.M. Boia E.S. Monoamine Oxidase-Related Vascular Oxidative Stress in Diseases Associated with Inflammatory Burden Oxid. Med. Cell. Longev. 2019 2019 8954201 10.1155/2019/8954201 31178977 

  33. 33. Sturza A. Olariu S. Ionica M. Duicu O.M. Vaduva A.O. Boia E. Muntean D.M. Popoiu C.M. Monoamine oxidase is a source of oxidative stress in obese patients with chronic inflammation (1) Can. J. Physiol. Pharm. 2019 97 844 849 10.1139/cjpp-2019-0028 31051081 

  34. 34. Dhabal S. Das P. Biswas P. Kumari P. Yakubenko V.P. Kundu S. Cathcart M.K. Kundu M. Biswas K. Bhattacharjee A. Regulation of monoamine oxidase A (MAO-A) expression, activity, and function in IL-13-stimulated monocytes and A549 lung carcinoma cells J. Biol. Chem. 2018 293 14040 14064 10.1074/jbc.RA118.002321 30021838 

  35. 35. Vega A. Chacon P. Monteseirin J. El Bekay R. Alvarez M. Alba G. Conde J. Martin-Nieto J. Bedoya F.J. Pintado E. A new role for monoamine oxidases in the modulation of macrophage-inducible nitric oxide synthase gene expression J. Leukoc. Biol. 2004 75 1093 1101 10.1189/jlb.1003459 15075350 

  36. 36. Ratiu C. Utu D. Petrus A. Norbert P. Olariu S. Duicu O. Sturza A. Muntean D.M. Monoamine oxidase inhibition improves vascular function and reduces oxidative stress in rats with lipopolysaccharide-induced inflammation Gen. Physiol. Biophys. 2018 37 687 694 10.4149/gpb_2018014 30061472 

  37. 37. Chung H.S. Kim H. Bae H. Phenelzine (monoamine oxidase inhibitor) increases production of nitric oxide and proinflammatory cytokines via the NF-kappaB pathway in lipopolysaccharide-activated microglia cells Neurochem. Res. 2012 37 2117 2124 10.1007/s11064-012-0833-y 22763802 

  38. 38. Nowakowska E. Chodera A. [Inhibitory monoamine oxidases of the new generation] Pol. Merkur. Lek. 1997 3 1 4 

  39. 39. Mann J.J. Aarons S.F. Frances A.J. Brown R.D. Studies of selective and reversible monoamine oxidase inhibitors J. Clin. Psychiatry 1984 45 62 66 6429130 

  40. 40. Lee J.D. Kato K. Tobias P.S. Kirkland T.N. Ulevitch R.J. Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein J. Exp. Med. 1992 175 1697 1705 10.1084/jem.175.6.1697 1375269 

  41. 41. Vindis C. Seguelas M.H. Bianchi P. Parini A. Cambon C. Monoamine oxidase B induces ERK-dependent cell mitogenesis by hydrogen peroxide generation Biochem. Biophys. Res. Commun. 2000 271 181 185 10.1006/bbrc.2000.2524 10777699 

  42. 42. Greenhill C.J. Rose-John S. Lissilaa R. Ferlin W. Ernst M. Hertzog P.J. Mansell A. Jenkins B.J. IL-6 trans-signaling modulates TLR4-dependent inflammatory responses via STAT3 J. Immunol. 2011 186 1199 1208 10.4049/jimmunol.1002971 21148800 

  43. 43. Niemand C. Nimmesgern A. Haan S. Fischer P. Schaper F. Rossaint R. Heinrich P.C. Muller-Newen G. Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3 J. Immunol. 2003 170 3263 3272 10.4049/jimmunol.170.6.3263 12626585 

  44. 44. Hoogland I.C. Houbolt C. van Westerloo D.J. van Gool W.A. van de Beek D. Systemic inflammation and microglial activation: Systematic review of animal experiments J. Neuroinflammation 2015 12 114 10.1186/s12974-015-0332-6 26048578 

  45. 45. Skelly D.T. Hennessy E. Dansereau M.A. Cunningham C. A systematic analysis of the peripheral and CNS effects of systemic LPS, IL-1beta, [corrected] TNF-alpha and IL-6 challenges in C57BL/6 mice PLoS ONE 2013 8 e69123 10.1371/annotation/90c76048-2edd-4315-8404-4d9d8cbd411e 23840908 

  46. 46. Yates S.L. Burgess L.H. Kocsis-Angle J. Antal J.M. Dority M.D. Embury P.B. Piotrkowski A.M. Brunden K.R. Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia J. Neurochem. 2000 74 1017 1025 10.1046/j.1471-4159.2000.0741017.x 10693932 

  47. 47. Fu W. Vukojevic V. Patel A. Soudy R. MacTavish D. Westaway D. Kaur K. Goncharuk V. Jhamandas J. Role of microglial amylin receptors in mediating beta amyloid (Abeta)-induced inflammation J. Neuroinflammation 2017 14 199 10.1186/s12974-017-0972-9 28985759 

  48. 48. Park J.H. Ju Y.H. Choi J.W. Song H.J. Jang B.K. Woo J. Chun H. Kim H.J. Shin S.J. Yarishkin O. Newly developed reversible MAO-B inhibitor circumvents the shortcomings of irreversible inhibitors in Alzheimer’s disease Sci. Adv. 2019 5 10.1126/sciadv.aav0316 

  49. 49. Fagervall I. Ross S.B. Inhibition of monoamine oxidase in monoaminergic neurones in the rat brain by irreversible inhibitors Biochem. Pharm. 1986 35 1381 1387 10.1016/0006-2952(86)90285-6 2870717 

  50. 50. McKenna K.F. McManus D.J. Baker G.B. Coutts R.T. Chronic administration of the antidepressant phenelzine and its N-acetyl analogue: Effects on GABAergic function J. Neural. Transm. Suppl. 1994 41 115 122 10.1007/978-3-7091-9324-2_15 7931216 

  51. 51. Hill M.N. Ho W.S. Hillard C.J. Gorzalka B.B. Differential effects of the antidepressants tranylcypromine and fluoxetine on limbic cannabinoid receptor binding and endocannabinoid contents J. Neural. Transm. (Vienna) 2008 115 1673 1679 10.1007/s00702-008-0131-7 18974922 

  52. 52. Ricken R. Ulrich S. Schlattmann P. Adli M. Tranylcypromine in mind (Part II): Review of clinical pharmacology and meta-analysis of controlled studies in depression Eur. Neuropsychopharmacol. 2017 27 714 731 10.1016/j.euroneuro.2017.04.003 28579071 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로