$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Quantitative Proteomic Analysis of Primitive Neural Stem Cells from LRRK2 G2019S-Associated Parkinson’s Disease Patient-Derived iPSCs 원문보기

Life, v.10 no.12, 2020년, pp.331 -   

Sim, Hyuna (Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea) ,  Seo, Ji-Hye (hyunasim@kribb.re.kr (H.S.)) ,  Kim, Jumi (omy94107@kribb.re.kr (M.O.)) ,  Oh, Minyoung (jooeunlee@kribb.re.kr (J.-E.L.)) ,  Lee, Joo-Eun (areumbaek@kribb.re.kr (A.B.)) ,  Baek, Areum (myson@kribb.re.kr (M.-Y.S.)) ,  Lee, Seo-Young (Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Korea) ,  Chung, Sun-Ku (wlgpsid7156@naver.com (J.-H.S.)) ,  Son, Mi-Young (returnjumi@gmail.com (J.K.)) ,  Chae, Jung-Il (jichae@jbnu.ac.kr (J.-I.C.)) ,  Jeon, Young-Joo (Department of Dental Pharmacology, School of Dentistry, BK21 Plus, Jeonbuk National University, Jeonju 54896, Korea) ,  Kim, Janghwan (wlgpsid7156@naver.com (J.-H.S.))

Abstract AI-Helper 아이콘AI-Helper

Parkinson’s disease (PD) is a common neurodegenerative disease, causing movement defects. The incidence of PD is constantly increasing and this disease is still incurable. Thus, understanding PD pathophysiology would be pivotal for the development of PD therapy, and various PD models have thus...

Keyword

참고문헌 (70)

  1. 1. Jankovic J. Parkinson’s disease: Clinical features and diagnosis J. Neurol. Neurosurg. Psychiatry 2008 79 368 376 10.1136/jnnp.2007.131045 18344392 

  2. 2. Dickson D.W. Fujishiro H. Orr C. DelleDonne A. Josephs K.A. Frigerio R. Burnett M. Parisi J.E. Klos K.J. Ahlskog J.E. Neuropathology of non-motor features of Parkinson disease Park. Relat. Disord. 2009 15 S1 S5 10.1016/S1353-8020(09)70769-2 

  3. 3. Poewe W. Seppi K. Tanner C.M. Halliday G.M. Brundin P. Volkmann J. Schrag A.E. Lang A.E. Parkinson disease Nat. Rev. Dis. Prim. 2017 3 1 21 10.1038/nrdp.2017.13 

  4. 4. Gasser T. Mendelian forms of Parkinson’s disease Biochim. Biophys. Acta Mol. Basis Dis. 2009 1792 587 596 10.1016/j.bbadis.2008.12.007 

  5. 5. Pan-Montojo F. Reichmann H. Considerations on the role of environmental toxins in idiopathic Parkinson’s disease pathophysiology Transl. Neurodegener. 2014 3 1 13 10.1186/2047-9158-3-10 24398160 

  6. 6. Mata I.F. Wedemeyer W.J. Farrer M.J. Taylor J.P. Gallo K.A. LRRK2 in Parkinson’s disease: Protein domains and functional insights Trends Neurosci. 2006 29 286 293 10.1016/j.tins.2006.03.006 16616379 

  7. 7. Jaleel M. Nichols R.J. Deak M. Campbell D.G. Gillardon F. Knebel A. Alessi D.R. LRRK2 phosphorylates moesin at threonine-558: Characterization of how Parkinson’s disease mutants affect kinase activity Biochem. J. 2007 405 307 317 10.1042/BJ20070209 17447891 

  8. 8. Daher J.P.L. Pletnikova O. Biskup S. Musso A. Gellhaar S. Galter D. Troncoso J.C. Lee M.K. Dawson T.M. Dawson V.L. Neurodegenerative phenotypes in an A53T α-synuclein transgenic mouse model are independent of LRRK2 Hum. Mol. Genet. 2012 21 2420 2431 10.1093/hmg/dds057 22357653 

  9. 9. Hsieh C.H. Shaltouki A. Gonzalez A.E. Bettencourt da Cruz A. Burbulla L.F. St. Lawrence E. Schule B. Krainc D. Palmer T.D. Wang X. Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson’s Disease Cell Stem Cell 2016 19 709 724 10.1016/j.stem.2016.08.002 27618216 

  10. 10. Manzoni C. Lewis P.A. Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies FASEB J. 2013 27 3424 3429 10.1096/fj.12-223842 23682122 

  11. 11. Chesselet M.F. Fleming S. Mortazavi F. Meurers B. Strengths and limitations of genetic mouse models of Parkinson’s disease Park. Relat. Disord. 2008 14 84 87 10.1016/j.parkreldis.2008.04.004 18585084 

  12. 12. Giasson B.I. Duda J.E. Quinn S.M. Zhang B. Trojanowski J.Q. Lee V.M. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein Neuron 2002 34 521 533 10.1016/S0896-6273(02)00682-7 12062037 

  13. 13. Lee M.K. Stirling W. Xu Y. Xu E. Qui D. Mandir A.S. Dawson T.M. Copeland N.G. Jenkins N.A. Price D.L. Human α-synuclein-harboring familial Parkinson’s disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice Proc. Natl. Acad. Sci. USA 2002 99 8968 8973 10.1073/pnas.132197599 12084935 

  14. 14. Masliah E. Rockenstein E. Veinbergs I. Mallory M. Hashimoto M. Takeda A. Sagara Y. Sisk A. Mucke L. Dopaminergic loss and inclusion body formation in α-synuclein mice: Implications for neurodegenerative disorders Science 2000 287 1265 1269 10.1126/science.287.5456.1265 10678833 

  15. 15. Beal M.F. Flint Beal Experimental models of Parkinson disease Nat. Rev. Neurosci. 2001 2 325 334 10.1038/35072550 11331916 

  16. 16. Chung C.Y. Khurana V. Auluck P.K. Tardiff D.F. Mazzulli J.R. Soldner F. Baru V. Lou Y. Freyzon Y. Cho S. Identification and Rescue of a-Synuclein Toxicity in Parkinson Patient-Derived Neurons Science 2013 342 983 988 10.1126/science.1245296 24158904 

  17. 17. Zhang S.C. Neural subtype specification from embryonic stem cells Brain Pathol. 2006 16 132 142 10.1111/j.1750-3639.2006.00008.x 16768754 

  18. 18. Liu G.H. Qu J. Suzuki K. Nivet E. Li M. Montserrat N. Yi F. Xu X. Ruiz S. Zhang W. Progressive degeneration of human neural stem cells caused by pathogenic LRRK2 Nature 2012 491 603 607 10.1038/nature11557 23075850 

  19. 19. Son M.-Y. Sim H. Son Y.S. Jung K.B. Lee M.-O. Oh J.-H. Chung S.-K. Jung C.-R. Kim J. Distinctive genomic signature of neural and intestinal organoids from familial Parkinson’s disease patient-derived induced pluripotent stem cells Neuropathol. Appl. Neurobiol. 2017 43 10.1111/nan.12396 

  20. 20. Lee M. Ha J. Son Y.S. Ahn H. Jung K.B. Son M.Y. Kim J. Efficient exogenous DNA-free reprogramming with suicide gene vectors Exp. Mol. Med. 2019 51 10.1038/s12276-019-0282-7 

  21. 21. Li W. Sun W. Zhang Y. Wei W. Ambasudhan R. Xia P. Talantova M. Lin T. Kim J. Wang X. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors Proc. Natl. Acad. Sci. USA 2011 108 8299 8304 10.1073/pnas.1014041108 21525408 

  22. 22. Lee M. Sim H. Ahn H. Ha J. Baek A. Jeon Y.-J. Son M.-Y. Kim J. Direct reprogramming to human induced neuronal progenitors from fibroblasts of familial and sporadic Parkinson’s disease patients Int. J. Stem Cells 2019 12 474 483 10.15283/ijsc19075 31474031 

  23. 23. Zuo X. Echan L. Hembach P. Tang H.Y. Speicher K.D. Santoli D. Speicher D.W. Towards global analysis of mammalian proteomes using sample prefractionation prior to narrow pH range two-dimensional gels and using one-dimensional gels for insoluble and large proteins Electrophoresis 2001 22 1603 1615 10.1002/1522-2683(200105)22:9<1603::AID-ELPS1603>3.0.CO;2-I 11425216 

  24. 24. Niu J. Yu M. Wang C. Xu Z. Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via dynamin-like protein J. Neurochem. 2012 122 650 658 10.1111/j.1471-4159.2012.07809.x 22639965 

  25. 25. Walter J. Bolognin S. Antony P.M.A. Nickels S.L. Poovathingal S.K. Salamanca L. Magni S. Perfeito R. Hoel F. Qing X. Neural Stem Cells of Parkinson’s Disease Patients Exhibit Aberrant Mitochondrial Morphology and Functionality Stem Cell Reports 2019 12 878 889 10.1016/j.stemcr.2019.03.004 30982740 

  26. 26. Tolosa E. Vila M. Klein C. Rascol O. LRRK2 in Parkinson disease: Challenges of clinical trials Nat. Rev. Neurol. 2020 16 97 107 10.1038/s41582-019-0301-2 31980808 

  27. 27. Deng X. Dzamko N. Prescott A. Davies P. Liu Q. Yang Q. Lee J.D. Patricelli M.P. Nomanbhoy T.K. Alessi D.R. Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2 Nat. Chem. Biol. 2011 7 203 205 10.1038/nchembio.538 21378983 

  28. 28. Dias V. Junn E. Mouradian M.M. The role of oxidative stress in Parkinson’s disease J. Parkinsons. Dis. 2013 3 461 491 10.3233/JPD-130230 24252804 

  29. 29. Weng M. Xie X. Liu C. Lim K.L. Zhang C.W. Li L. The Sources of Reactive Oxygen Species and Its Possible Role in the Pathogenesis of Parkinson’s Disease Parkinsons. Dis. 2018 2018 10.1155/2018/9163040 

  30. 30. Kish S.J. Morito C. Hornykiewicz O. Glutathione peroxidase activity in Parkinson’s disease brain Neurosci. Lett. 1985 58 343 346 10.1016/0304-3940(85)90078-3 4047494 

  31. 31. Keeney P.M. Xie J. Capaldi R.A. Bennett J.P. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled J. Neurosci. 2006 26 5256 5264 10.1523/JNEUROSCI.0984-06.2006 16687518 

  32. 32. De Simoni S. Goemaere J. Knoops B. Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+ Neurosci. Lett. 2008 433 219 224 10.1016/j.neulet.2007.12.068 18262354 

  33. 33. Bachmann M. Kukkurainen S. Hytonen V.P. Wehrle-Haller B. Cell adhesion by integrins Physiol. Rev. 2019 99 1655 1699 10.1152/physrev.00036.2018 31313981 

  34. 34. Wu X. Reddy D.S. Integrins as receptor targets for neurological disorders Pharmacol. Ther. 2012 134 68 81 10.1016/j.pharmthera.2011.12.008 22233753 

  35. 35. Izumi Y. Wakita S. Kanbara C. Nakai T. Akaike A. Kume T. Integrin α5β1 expression on dopaminergic neurons is involved in dopaminergic neurite outgrowth on striatal neurons Sci. Rep. 2017 7 1 14 10.1038/srep42111 28127051 

  36. 36. Schlie-Wolter S. Ngezahayo A. Chichkov B.N. The selective role of ECM components on cell adhesion, morphology, proliferation and communication in vitro Exp. Cell Res. 2013 319 1553 1561 10.1016/j.yexcr.2013.03.016 23588204 

  37. 37. Mege R.M. Gavard J. Lambert M. Regulation of cell-cell junctions by the cytoskeleton Curr. Opin. Cell Biol. 2006 18 541 548 10.1016/j.ceb.2006.08.004 16905303 

  38. 38. Cartelli D. Goldwurm S. Casagrande F. Pezzoli G. Cappelletti G. Microtubule destabilization is shared by genetic and idiopathic Parkinson’s disease patient fibroblasts PLoS ONE 2012 7 e37467 10.1371/annotation/6db7193b-913a-42f2-aa7c-139d6e15142a 22666358 

  39. 39. Madabhushi R. Pan L. Tsai L. Review DNA Damage and Its Links to Neurodegeneration Neuron 2014 83 266 282 10.1016/j.neuron.2014.06.034 25033177 

  40. 40. Guo Z. Kozlov S. Lavin M.F. Person M.D. Paull T.T. ATM Activation by Oxidative Stress Science 2010 330 517 521 10.1126/science.1192912 20966255 

  41. 41. Fell V.L. Schild-Poulter C. The Ku heterodimer: Function in DNA repair and beyond Mutat. Res. Rev. Mutat. Res. 2015 763 15 29 10.1016/j.mrrev.2014.06.002 25795113 

  42. 42. Tomimatsu N. Tahimic C.G.T. Otsuki A. Burma S. Fukuhara A. Sato K. Shiota G. Oshimura M. Chen D.J. Kurimasa A. Ku70/80 modulates ATM and ATR signaling pathways in response to DNA double strand breaks J. Biol. Chem. 2007 282 10138 10145 10.1074/jbc.M611880200 17272272 

  43. 43. So S. Davis A.J. Chen D.J. Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites J. Cell Biol. 2009 187 977 990 10.1083/jcb.200906064 20026654 

  44. 44. Kastan M.B. Lim D. the Many Substrates and Functions of ATM Nat. Rev. Mol. Cell Biol. 2000 1 10.1038/35043058 

  45. 45. Christine K. Ana W. Genetics of Parkinson’s disease Cold Spring Harb. Perspect. Med. 2012 2 a008888 10.1101/cshperspect.a008888 22315721 

  46. 46. Weykopf B. Haupt S. Jungverdorben J. Flitsch L.J. Hebisch M. Liu G.H. Suzuki K. Belmonte J.C.I. Peitz M. Blaess S. Induced pluripotent stem cell-based modeling of mutant LRRK2-associated Parkinson’s disease Eur. J. Neurosci. 2019 49 561 589 10.1111/ejn.14345 30656775 

  47. 47. Nguyen H.N. Byers B. Cord B. Shcheglovitov A. Byrne J. Gujar P. Kee K. Schule B. Dolmetsch R.E. Langston W. LRRK2 mutant iPSC-derived da neurons demonstrate increased susceptibility to oxidative stress Cell Stem Cell 2011 8 267 280 10.1016/j.stem.2011.01.013 21362567 

  48. 48. Delamarre A. Meissner W.G. Epidemiologie, facteurs de risque environnementaux et genetiques de la maladie de Parkinson Press. Med 2017 46 175 181 10.1016/j.lpm.2017.01.001 

  49. 49. James A.M. Cocheme H.M. Murphy M.P. Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing Mech. Ageing Dev. 2005 126 982 986 10.1016/j.mad.2005.03.026 15923020 

  50. 50. Wood Z.A. Schroder E. Harris J.R. Poole L.B. Structure, mechanism and regulation of peroxiredoxins Trends Biochem. Sci. 2003 28 32 40 10.1016/S0968-0004(02)00003-8 12517450 

  51. 51. Concannon C.G. Gorman A.M. Samali A. On the role of Hsp27 in regulating apoptosis Apoptosis 2003 8 61 70 10.1023/A:1021601103096 12510153 

  52. 52. Levy D.R. Udgata A. Tourlomousis P. Symmons M.F. Hopkins L.J. Bryant C.E. Gay N.J. The Parkinson’s disease?associated kinase LRRK2 regulates genes required for cell adhesion, polarization, and chemotaxis in activated murine macrophages J. Biol. Chem. 2020 295 10857 10867 10.1074/jbc.RA119.011842 32111741 

  53. 53. Choi I. Kim B. Byun J.W. Baik S.H. Huh Y.H. Kim J.H. Mook-Jung I. Song W.K. Shin J.H. Seo H. LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase Nat. Commun. 2015 6 10.1038/ncomms9255 26365310 

  54. 54. Meberg P.J. Bamburg J.R. Increase in neurite outgrowth mediated by overexpression of actin depolymerizing factor J. Neurosci. 2000 20 2459 2469 10.1523/JNEUROSCI.20-07-02459.2000 10729326 

  55. 55. Goult B.T. Yan J. Schwartz M.A. Talin as a mechanosensitive signaling hub J. Cell Biol. 2018 217 3776 3784 10.1083/jcb.201808061 30254032 

  56. 56. Gumbiner B.M. Cell adhesion: The molecular basis of tissue architecture and morphogenesis Cell 1996 84 345 357 10.1016/S0092-8674(00)81279-9 8608588 

  57. 57. Neubauer K. Zieger B. The Mammalian Septin Interactome Front. Cell Dev. Biol. 2017 5 1 9 10.3389/fcell.2017.00003 28184371 

  58. 58. Hynes R.O. Integrins: Bidirectional, Allosteric Signaling Machines Cell 2002 110 673 687 10.1016/S0092-8674(02)00971-6 12297042 

  59. 59. Ross R.S. Molecular and mechanical synergy: Cross-talk between integrins and growth factor receptors Cardiovasc. Res. 2004 63 381 390 10.1016/j.cardiores.2004.04.027 15276463 

  60. 60. Kobayashi N. Kostka G. Garbe J.H.O. Keene D.R. Bachinger H.P. Hanisch F.G. Markova D. Tsuda T. Timpl R. Chu M.L. A comparative analysis of the fibulin protein family: Biochemical characterization, binding interactions, and tissue localization J. Biol. Chem. 2007 282 11805 11816 10.1074/jbc.M611029200 17324935 

  61. 61. Twal W.O. Hammad S.M. Guffy S.L. Argraves W.S. A novel intracellular fibulin-1D variant binds to the cytoplasmic domain of integrin beta 1 subunit Matrix Biol. 2015 43 97 108 10.1016/j.matbio.2015.01.021 25661773 

  62. 62. Romero S. Le Clainche C. Gautreau A.M. Actin polymerization downstream of integrins: Signaling pathways and mechanotransduction Biochem. J. 2020 477 1 21 10.1042/BCJ20170719 31913455 

  63. 63. Kuhn T.B. Meberg P.J. Brown M.D. Bernstein B.W. Minamide L.S. Jensen J.R. Okada K. Soda E.A. Bamburg J.R. Regulating actin dynamics in neuronal growth cones by ADF/cofilin and Rho family GTPases J. Neurobiol. 2000 44 126 144 10.1002/1097-4695(200008)44:2<126::AID-NEU4>3.0.CO;2-Z 10934317 

  64. 64. Kremer B.E. Adang L.A. Macara I.G. Septins Regulate Actin Organization and Cell-Cycle Arrest through Nuclear Accumulation of NCK Mediated by SOCS7 Cell 2007 130 837 850 10.1016/j.cell.2007.06.053 17803907 

  65. 65. Spiliotis E.T. Hunt S.J. Hu Q. Kinoshita M. Nelson W.J. Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules J. Cell Biol. 2008 180 295 303 10.1083/jcb.200710039 18209106 

  66. 66. Munoz-Lasso D.C. Molla B. Calap-Quintana P. Garcia-Gimenez J.L. Pallardo F.V. Palau F. Gonzalez-Cabo P. Cofilin dysregulation alters actin turnover in frataxin-deficient neurons Sci. Rep. 2020 10 5207 10.1038/s41598-020-62050-7 32251310 

  67. 67. Toshiyuki M. Reed J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene Cell 1995 80 293 299 10.1016/0092-8674(95)90412-3 7834749 

  68. 68. Baldereschi M. Di Carlo A. Rocca W.A. Vanni P. Maggi S. Perissinotto E. Grigoletto F. Amaducci L. Inzitari D. Parkinson’s disease and parkinsonism in a longitudinal study: Two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging Neurology 2000 55 1358 1363 10.1212/WNL.55.9.1358 11087781 

  69. 69. Haaxma C.A. Bloem B.R. Borm G.F. Oyen W.J.G. Leenders K.L. Eshuis S. Booij J. Dluzen D.E. Horstink M.W.I.M. Gender differences in Parkinson’s disease J. Neurol. Neurosurg. Psychiatry 2007 78 819 824 10.1136/jnnp.2006.103788 17098842 

  70. 70. Moisan F. Kab S. Mohamed F. Canonico M. Le Guern M. Quintin C. Carcaillon L. Nicolau J. Duport N. Singh-Manoux A. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis J. Neurol. Neurosurg. Psychiatry 2016 87 952 957 10.1136/jnnp-2015-312283 26701996 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로