$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Series Expansions of the Layer Potential Operators Using the Faber Polynomials and Their Applications to the Transmission Problem

SIAM journal on mathematical analysis, v.53 no.2, 2021년, pp.1630 - 1669  

Jung, Younghoon ,  Lim, Mikyoung

Abstract AI-Helper 아이콘AI-Helper

We consider the conductivity transmission problem in two dimensions with a simply connected inclusion of arbitrary shape. It is well known that the solvability of the transmission problem can be established via the boundary integral formulation in which the Neumann--Poincaré (NP) operator is i...

Keyword

참고문헌 (61)

  1. 1. H. Ammari, Y. T. Chow, K. Liu, and J. Zou, Optimal shape design by partial spectral data , SIAM J. Sci. Comput., 37 (2015), pp. B855--B883, https://doi.org/10.1137/130942498 . 

  2. 2. H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G. W. Milton, Spectral theory of a Neumann--Poincare?-type operator and analysis of cloaking due to anomalous localized resonance , Arch. Ration. Mech. Anal., 208 (2013), pp. 667--692, https://doi.org/10.1007/s00205-012-0605-5 . 

  3. 3. H. Ammari, J. Garnier, W. Jing, H. Kang, M. Lim, K. Sølna, and H. Wang, Mathematical and Statistical Methods for Multistatic Imaging , Lecture Notes in Math. 2098, Springer, Cham, 2013, https://doi.org/10.1007/978-3-319-02585-8 . 

  4. 4. H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements , Lecture Notes in Math. 1846, Springer, Berlin, 2004. 

  5. 5. H. Ammari, M. Putinar, M. Ruiz, S. Yu, and H. Zhang, Shape reconstruction of nanoparticles from their associated plasmonic resonances , J. Math. Pures Appl., 122 (2019), pp. 23--48, https://doi.org/10.1016/j.matpur.2017.09.003 . 

  6. 6. K. Ando and H. Kang, Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincare? operator , J. Math. Anal. Appl., 435 (2016), pp. 162--178, https://doi.org/10.1016/j.jmaa.2015.10.033 . 

  7. 7. K. Ando, H. Kang, and Y. Miyanishi, Exponential decay estimates of the eigenvalues for the Neumann-Poincare? operator on analytic boundaries in two dimensions , J. Integral Equations Appl., 30 (2018), pp. 473--489, https://doi.org/10.1216/JIE-2018-30-4-473 . 

  8. 8. K. Ando, H. Kang, Y. Miyanishi, and M. Putinar, Spectral Analysis of Neumann--Poincare? Operator , preprint, https://arxiv.org/abs/2003.14387 , 2020. 

  9. 9. M. G. Arsove, The Osgood-Taylor-Carathe?odory theorem , Proc. Amer. Math. Soc., 19 (1968), pp. 38--44, https://doi.org/10.2307/2036135 . 

  10. 10. S. Bergman and M. Schiffer, Kernel functions and conformal mapping , Compositio Math., 8 (1951), pp. 205--249. 

  11. 11. E. Bonnetier, C. Dapogny, F. Triki, and H. Zhang, The plasmonic resonances of a bowtie antenna , Anal. Theory Appl., 35 (2019), pp. 85--116, https://doi.org/10.4208/ata.oa-0011 . 

  12. 12. E. Bonnetier and H. Zhang, Characterization of the essential spectrum of the Neumann-Poincare? operator in 2D domains with corner via Weyl sequences , Rev. Mat. Iberoam., 35 (2019), pp. 925--948, https://doi.org/10.4171/rmi/1075 . 

  13. 13. A. Bo?ttcher, A. V. Chithra, and M. N. N. Namboodiri, Approximation of approximation numbers by truncation , Integral Equations Operator Theory, 39 (2001), pp. 387--395, https://doi.org/10.1007/BF01203320 . 

  14. 14. C. Carathe?odory, U?ber die gegenseitige Beziehung der Ra?nder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis , Math. Ann., 73 (1913), pp. 305--320, https://doi.org/10.1007/BF01456720 . 

  15. 15. D. Choi, J. Kim, and M. Lim, Geometric Multipole Expansion and Its Application to Neutral Inclusion of Arbitrary Shape , preprint, https://arxiv.org/abs/1808.02446v1 , 2018. 

  16. 16. D. Choi, J. Kim, and M. Lim, Analytical shape recovery of a conductivity inclusion based on Faber polynomials , Math. Ann., (2020), https://doi.org/10.1007/s00208-020-02041-1 . 

  17. 17. D. Choi, K. Kim, and M. Lim, An extension of the Eshelby conjecture to domains of general shape in anti-plane elasticity , J. Math. Anal. Appl., 495 (2021), 124756, https://doi.org/10.1016/j.jmaa.2020.124756 . 

  18. 18. D. S. Choi, J. Helsing, and M. Lim, Corner effects on the perturbation of an electric potential , SIAM J. Appl. Math., 78 (2018), pp. 1577--1601, https://doi.org/10.1137/17M115459X . 

  19. 19. C. Cirac\`\i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Ferna?ndez-Domi?nguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, Probing the ultimate limits of plasmonic enhancement , Science, 337 (2012), pp. 1072--1074, https://doi.org/10.1126/science.1224823 . 

  20. 20. A.-S. B.-B. Dhia, C. Hazard, and F. Monteghetti, Complex-Scaling Method for the Plasmonic Resonances of Planar Subwavelength Particles with Corners , preprint, https://hal.archives-ouvertes.fr/hal-02923259 , 2020. 

  21. 21. P. Duren, Univalent Functions , Grundlehren Math. Wiss. 259, Springer-Verlag, New York, 1983. 

  22. 22. L. Escauriaza, E. B. Fabes, and G. Verchota, On a regularity theorem for weak solutions to transmission problems with internal Lipschitz boundaries , Proc. Amer. Math. Soc., 115 (1992), pp. 1069--1076, https://doi.org/10.2307/2159357 . 

  23. 23. L. Escauriaza and M. Mitrea, Transmission problems and spectral theory for singular integral operators on Lipschitz domains , J. Funct. Anal., 216 (2004), pp. 141--171, https://doi.org/10.1016/j.jfa.2003.12.005 . 

  24. 24. L. Escauriaza and J. K. Seo, Regularity properties of solutions to transmission problems , Trans. Amer. Math. Soc., 338 (1993), pp. 405--430, https://doi.org/10.2307/2154462 . 

  25. 25. G. Faber, U?ber polynomische Entwickelungen , Math. Ann., 57 (1903), pp. 389--408, https://doi.org/10.1007/BF01444293 . 

  26. 26. E. Fabes, M. Sand, and J. K. Seo, The spectral radius of the classical layer potentials on convex domains , in Partial Differential Equations with Minimal Smoothness and Applications (Chicago, IL, 1990), IMA Vol. Math. Appl. 42, Springer, New York, 1992, pp. 129--137, https://doi.org/10.1007/978-1-4612-2898-1_12 . 

  27. 27. I. Gohberg, S. Goldberg, and M. A. Kaashoek, Basic Classes of Linear Operators , Birkha?user Verlag, Basel, 2003, https://doi.org/10.1007/978-3-0348-7980-4 . 

  28. 28. H. Grunsky, Koeffizientenbedingungen fu?r schlicht abbildende meromorphe Funktionen , Math. Z., 45 (1939), pp. 29--61, https://doi.org/10.1007/BF01580272 . 

  29. 29. J. Helsing, Solving integral equations on piecewise smooth boundaries using the RCIP method: A tutorial , Abstr. Appl. Anal., 2013 (2013), 938167, https://doi.org/10.1155/2013/938167 . 

  30. 30. J. Helsing, H. Kang, and M. Lim, Classification of spectra of the Neumann-Poincare? operator on planar domains with corners by resonance , Ann. Inst. H. Poincare? Anal. Non Line?aire, 34 (2017), pp. 991--1011, https://doi.org/10.1016/j.anihpc.2016.07.004 . 

  31. 31. P. Henrici, Applied and Computational Complex Analysis, Vol. 3: Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions , John Wiley & Sons, New York, 1986. 

  32. 32. Y. Jung and M. Lim, A decay estimate for the eigenvalues of the Neumann-Poincare? operator using the Grunsky coefficients , Proc. Amer. Math. Soc., 148 (2020), pp. 591--600, https://doi.org/10.1090/proc/14785 . 

  33. 33. H. Kang, K. Kim, H. Lee, J. Shin, and S. Yu, Spectral properties of the Neumann-Poincare? operator and uniformity of estimates for the conductivity equation with complex coefficients , J. Lond. Math. Soc. (2), 93 (2016), pp. 519--545, https://doi.org/10.1112/jlms/jdw003 . 

  34. 34. H. Kang, M. Lim, and S. Yu, Spectral resolution of the Neumann-Poincare? operator on intersecting disks and analysis of plasmon resonance , Arch. Ration. Mech. Anal., 226 (2017), pp. 83--115, https://doi.org/10.1007/s00205-017-1129-9 . 

  35. 35. H. Kang and M. Putinar, Spectral permanence in a space with two norms , Rev. Mat. Iberoam., 34 (2018), pp. 621--635, https://doi.org/10.4171/RMI/998 . 

  36. 36. O. D. Kellogg, Foundations of Potential Theory , Springer, Berlin, 1967. 

  37. 37. C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems , CBMS Reg. Conf. Ser. Math. 83, AMS, Providence, RI, 1994. 

  38. 38. D. Khavinson, M. Putinar, and H. S. Shapiro, Poincare?'s variational problem in potential theory , Arch. Ration. Mech. Anal., 185 (2007), pp. 143--184, https://doi.org/10.1007/s00205-006-0045-1 . 

  39. 39. M. G. Krein, Compact linear operators on functional spaces with two norms , Integral Equations Operator Theory, 30 (1998), pp. 140--162, https://doi.org/10.1007/BF01238216 . 

  40. 40. R. Kress, Linear Integral Equations , 3rd ed., Appl. Math. Sci. 82, Springer, New York, 2014, https://doi.org/10.1007/978-1-4614-9593-2 . 

  41. 41. P. K. Kythe, Computational Conformal Mapping , Birkha?user Boston, Boston, MA, 1998, https://doi.org/10.1007/978-1-4612-2002-2 . 

  42. 42. W. Li, K.-M. Perfekt, and S. P. Shipman, Infinitely Many Embedded Eigenvalues for the Neumann--Poincare? Operator in 3D , preprint, https://arxiv.org/abs/2009.04371 , 2020. 

  43. 43. W. Li and S. P. Shipman, Embedded eigenvalues for the Neumann-Poincare? operator , J. Integral Equations Appl., 31 (2019), pp. 505--534, https://doi.org/10.1216/JIE-2019-31-4-505 . 

  44. 44. M. Lim, Symmetry of a boundary integral operator and a characterization of a ball , Illinois J. Math., 45 (2001), pp. 537--543, https://doi.org/10.1215/ijm/1258138354 . 

  45. 45. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles , Phys. Rev. B, 72 (2005), 155412, https://doi.org/10.1103/PhysRevB.72.155412 . 

  46. 46. G. W. Milton and N.-A. P. Nicorovici, On the cloaking effects associated with anomalous localized resonance , Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), pp. 3027--3059, https://doi.org/10.1098/rspa.2006.1715 . 

  47. 47. Y. Miyanishi and T. Suzuki, Eigenvalues and eigenfunctions of double layer potentials , Trans. Amer. Math. Soc., 369 (2017), pp. 8037--8059, https://doi.org/10.1090/tran/6913 . 

  48. 48. C. Neumann, U?ber die Methode des arithmetischen Mittels, Erste and zweite Abhandlung , in Abh. d. Kgl. Sa?chs Ges. d. Wiss., IX and XIII, Leipzig, 1887/1888. 

  49. 49. J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields , Science, 312 (2006), pp. 1780--1782, https://doi.org/10.1126/science.1125907 . 

  50. 50. K.-M. Perfekt, Plasmonic eigenvalue problem for corners: Limiting absorption principle and absolute continuity in the essential spectrum , J. Math. Pures Appl., 145 (2021), pp. 130--162, https://doi.org/10.1016/j.matpur.2020.07.001 . 

  51. 51. K.-M. Perfekt and M. Putinar, Spectral bounds for the Neumann-Poincare? operator on planar domains with corners , J. Anal. Math., 124 (2014), pp. 39--57, https://doi.org/10.1007/s11854-014-0026-5 . 

  52. 52. K.-M. Perfekt and M. Putinar, The essential spectrum of the Neumann-Poincare? operator on a domain with corners , Arch. Ration. Mech. Anal., 223 (2017), pp. 1019--1033, https://doi.org/10.1007/s00205-016-1051-6 . 

  53. 53. H. Poincare?, La me?thode de Neumann et le proble?me de Dirichlet , Acta Math., 20 (1897), pp. 59--142, https://doi.org/10.1007/BF02418028 . 

  54. 54. C. Pommerenke, Boundary Behaviour of Conformal Maps , Grundlehren Math. Wiss. 299, Springer-Verlag, Berlin, 1992, https://doi.org/10.1007/978-3-662-02770-7 . 

  55. 55. M. Schiffer, The Fredholm eigen values of plane domains , Pacific J. Math., 7 (1957), pp. 1187--1225. 

  56. 56. M. Schiffer, Fredholm eigen values of multiply-connected domains , Pacific J. Math., 9 (1959), pp. 211--269. 

  57. 57. M. Schiffer, Fredholm eigenvalues and Grunsky matrices , Ann. Polon. Math., 39 (1981), pp. 149--164, https://doi.org/10.4064/ap-39-1-149-164 . 

  58. 58. V. I. Smirnov and N. A. Lebedev, Functions of a Complex Variable: Constructive Theory , MIT Press, Cambridge, MA, 1968. 

  59. 59. P. K. Suetin, Polynomials Orthogonal over a Region and Bieberbach Polynomials , AMS, Providence, RI, 1974. 

  60. 60. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , J. Funct. Anal., 59 (1984), pp. 572--611, https://doi.org/10.1016/0022-1236(84)90066-1 . 

  61. 61. M. Wala and A. Klo?ckner, Conformal mapping via a density correspondence for the double-layer potential , SIAM J. Sci. Comput., 40 (2018), pp. A3715--A3732, https://doi.org/10.1137/18M1174982 . 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로