최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기SIAM journal on mathematical analysis, v.53 no.2, 2021년, pp.1630 - 1669
Jung, Younghoon , Lim, Mikyoung
We consider the conductivity transmission problem in two dimensions with a simply connected inclusion of arbitrary shape. It is well known that the solvability of the transmission problem can be established via the boundary integral formulation in which the Neumann--Poincaré (NP) operator is i...
1. H. Ammari, Y. T. Chow, K. Liu, and J. Zou, Optimal shape design by partial spectral data , SIAM J. Sci. Comput., 37 (2015), pp. B855--B883, https://doi.org/10.1137/130942498 .
2. H. Ammari, G. Ciraolo, H. Kang, H. Lee, and G. W. Milton, Spectral theory of a Neumann--Poincare?-type operator and analysis of cloaking due to anomalous localized resonance , Arch. Ration. Mech. Anal., 208 (2013), pp. 667--692, https://doi.org/10.1007/s00205-012-0605-5 .
4. H. Ammari and H. Kang, Reconstruction of Small Inhomogeneities from Boundary Measurements , Lecture Notes in Math. 1846, Springer, Berlin, 2004.
5. H. Ammari, M. Putinar, M. Ruiz, S. Yu, and H. Zhang, Shape reconstruction of nanoparticles from their associated plasmonic resonances , J. Math. Pures Appl., 122 (2019), pp. 23--48, https://doi.org/10.1016/j.matpur.2017.09.003 .
6. K. Ando and H. Kang, Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincare? operator , J. Math. Anal. Appl., 435 (2016), pp. 162--178, https://doi.org/10.1016/j.jmaa.2015.10.033 .
7. K. Ando, H. Kang, and Y. Miyanishi, Exponential decay estimates of the eigenvalues for the Neumann-Poincare? operator on analytic boundaries in two dimensions , J. Integral Equations Appl., 30 (2018), pp. 473--489, https://doi.org/10.1216/JIE-2018-30-4-473 .
8. K. Ando, H. Kang, Y. Miyanishi, and M. Putinar, Spectral Analysis of Neumann--Poincare? Operator , preprint, https://arxiv.org/abs/2003.14387 , 2020.
10. S. Bergman and M. Schiffer, Kernel functions and conformal mapping , Compositio Math., 8 (1951), pp. 205--249.
11. E. Bonnetier, C. Dapogny, F. Triki, and H. Zhang, The plasmonic resonances of a bowtie antenna , Anal. Theory Appl., 35 (2019), pp. 85--116, https://doi.org/10.4208/ata.oa-0011 .
12. E. Bonnetier and H. Zhang, Characterization of the essential spectrum of the Neumann-Poincare? operator in 2D domains with corner via Weyl sequences , Rev. Mat. Iberoam., 35 (2019), pp. 925--948, https://doi.org/10.4171/rmi/1075 .
13. A. Bo?ttcher, A. V. Chithra, and M. N. N. Namboodiri, Approximation of approximation numbers by truncation , Integral Equations Operator Theory, 39 (2001), pp. 387--395, https://doi.org/10.1007/BF01203320 .
14. C. Carathe?odory, U?ber die gegenseitige Beziehung der Ra?nder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis , Math. Ann., 73 (1913), pp. 305--320, https://doi.org/10.1007/BF01456720 .
15. D. Choi, J. Kim, and M. Lim, Geometric Multipole Expansion and Its Application to Neutral Inclusion of Arbitrary Shape , preprint, https://arxiv.org/abs/1808.02446v1 , 2018.
16. D. Choi, J. Kim, and M. Lim, Analytical shape recovery of a conductivity inclusion based on Faber polynomials , Math. Ann., (2020), https://doi.org/10.1007/s00208-020-02041-1 .
17. D. Choi, K. Kim, and M. Lim, An extension of the Eshelby conjecture to domains of general shape in anti-plane elasticity , J. Math. Anal. Appl., 495 (2021), 124756, https://doi.org/10.1016/j.jmaa.2020.124756 .
18. D. S. Choi, J. Helsing, and M. Lim, Corner effects on the perturbation of an electric potential , SIAM J. Appl. Math., 78 (2018), pp. 1577--1601, https://doi.org/10.1137/17M115459X .
19. C. Cirac\`\i, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Ferna?ndez-Domi?nguez, S. A. Maier, J. B. Pendry, A. Chilkoti, and D. R. Smith, Probing the ultimate limits of plasmonic enhancement , Science, 337 (2012), pp. 1072--1074, https://doi.org/10.1126/science.1224823 .
20. A.-S. B.-B. Dhia, C. Hazard, and F. Monteghetti, Complex-Scaling Method for the Plasmonic Resonances of Planar Subwavelength Particles with Corners , preprint, https://hal.archives-ouvertes.fr/hal-02923259 , 2020.
21. P. Duren, Univalent Functions , Grundlehren Math. Wiss. 259, Springer-Verlag, New York, 1983.
23. L. Escauriaza and M. Mitrea, Transmission problems and spectral theory for singular integral operators on Lipschitz domains , J. Funct. Anal., 216 (2004), pp. 141--171, https://doi.org/10.1016/j.jfa.2003.12.005 .
25. G. Faber, U?ber polynomische Entwickelungen , Math. Ann., 57 (1903), pp. 389--408, https://doi.org/10.1007/BF01444293 .
26. E. Fabes, M. Sand, and J. K. Seo, The spectral radius of the classical layer potentials on convex domains , in Partial Differential Equations with Minimal Smoothness and Applications (Chicago, IL, 1990), IMA Vol. Math. Appl. 42, Springer, New York, 1992, pp. 129--137, https://doi.org/10.1007/978-1-4612-2898-1_12 .
28. H. Grunsky, Koeffizientenbedingungen fu?r schlicht abbildende meromorphe Funktionen , Math. Z., 45 (1939), pp. 29--61, https://doi.org/10.1007/BF01580272 .
29. J. Helsing, Solving integral equations on piecewise smooth boundaries using the RCIP method: A tutorial , Abstr. Appl. Anal., 2013 (2013), 938167, https://doi.org/10.1155/2013/938167 .
30. J. Helsing, H. Kang, and M. Lim, Classification of spectra of the Neumann-Poincare? operator on planar domains with corners by resonance , Ann. Inst. H. Poincare? Anal. Non Line?aire, 34 (2017), pp. 991--1011, https://doi.org/10.1016/j.anihpc.2016.07.004 .
31. P. Henrici, Applied and Computational Complex Analysis, Vol. 3: Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions , John Wiley & Sons, New York, 1986.
32. Y. Jung and M. Lim, A decay estimate for the eigenvalues of the Neumann-Poincare? operator using the Grunsky coefficients , Proc. Amer. Math. Soc., 148 (2020), pp. 591--600, https://doi.org/10.1090/proc/14785 .
33. H. Kang, K. Kim, H. Lee, J. Shin, and S. Yu, Spectral properties of the Neumann-Poincare? operator and uniformity of estimates for the conductivity equation with complex coefficients , J. Lond. Math. Soc. (2), 93 (2016), pp. 519--545, https://doi.org/10.1112/jlms/jdw003 .
34. H. Kang, M. Lim, and S. Yu, Spectral resolution of the Neumann-Poincare? operator on intersecting disks and analysis of plasmon resonance , Arch. Ration. Mech. Anal., 226 (2017), pp. 83--115, https://doi.org/10.1007/s00205-017-1129-9 .
35. H. Kang and M. Putinar, Spectral permanence in a space with two norms , Rev. Mat. Iberoam., 34 (2018), pp. 621--635, https://doi.org/10.4171/RMI/998 .
36. O. D. Kellogg, Foundations of Potential Theory , Springer, Berlin, 1967.
37. C. E. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems , CBMS Reg. Conf. Ser. Math. 83, AMS, Providence, RI, 1994.
38. D. Khavinson, M. Putinar, and H. S. Shapiro, Poincare?'s variational problem in potential theory , Arch. Ration. Mech. Anal., 185 (2007), pp. 143--184, https://doi.org/10.1007/s00205-006-0045-1 .
39. M. G. Krein, Compact linear operators on functional spaces with two norms , Integral Equations Operator Theory, 30 (1998), pp. 140--162, https://doi.org/10.1007/BF01238216 .
42. W. Li, K.-M. Perfekt, and S. P. Shipman, Infinitely Many Embedded Eigenvalues for the Neumann--Poincare? Operator in 3D , preprint, https://arxiv.org/abs/2009.04371 , 2020.
43. W. Li and S. P. Shipman, Embedded eigenvalues for the Neumann-Poincare? operator , J. Integral Equations Appl., 31 (2019), pp. 505--534, https://doi.org/10.1216/JIE-2019-31-4-505 .
44. M. Lim, Symmetry of a boundary integral operator and a characterization of a ball , Illinois J. Math., 45 (2001), pp. 537--543, https://doi.org/10.1215/ijm/1258138354 .
45. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles , Phys. Rev. B, 72 (2005), 155412, https://doi.org/10.1103/PhysRevB.72.155412 .
46. G. W. Milton and N.-A. P. Nicorovici, On the cloaking effects associated with anomalous localized resonance , Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), pp. 3027--3059, https://doi.org/10.1098/rspa.2006.1715 .
47. Y. Miyanishi and T. Suzuki, Eigenvalues and eigenfunctions of double layer potentials , Trans. Amer. Math. Soc., 369 (2017), pp. 8037--8059, https://doi.org/10.1090/tran/6913 .
48. C. Neumann, U?ber die Methode des arithmetischen Mittels, Erste and zweite Abhandlung , in Abh. d. Kgl. Sa?chs Ges. d. Wiss., IX and XIII, Leipzig, 1887/1888.
49. J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields , Science, 312 (2006), pp. 1780--1782, https://doi.org/10.1126/science.1125907 .
50. K.-M. Perfekt, Plasmonic eigenvalue problem for corners: Limiting absorption principle and absolute continuity in the essential spectrum , J. Math. Pures Appl., 145 (2021), pp. 130--162, https://doi.org/10.1016/j.matpur.2020.07.001 .
51. K.-M. Perfekt and M. Putinar, Spectral bounds for the Neumann-Poincare? operator on planar domains with corners , J. Anal. Math., 124 (2014), pp. 39--57, https://doi.org/10.1007/s11854-014-0026-5 .
52. K.-M. Perfekt and M. Putinar, The essential spectrum of the Neumann-Poincare? operator on a domain with corners , Arch. Ration. Mech. Anal., 223 (2017), pp. 1019--1033, https://doi.org/10.1007/s00205-016-1051-6 .
53. H. Poincare?, La me?thode de Neumann et le proble?me de Dirichlet , Acta Math., 20 (1897), pp. 59--142, https://doi.org/10.1007/BF02418028 .
55. M. Schiffer, The Fredholm eigen values of plane domains , Pacific J. Math., 7 (1957), pp. 1187--1225.
56. M. Schiffer, Fredholm eigen values of multiply-connected domains , Pacific J. Math., 9 (1959), pp. 211--269.
57. M. Schiffer, Fredholm eigenvalues and Grunsky matrices , Ann. Polon. Math., 39 (1981), pp. 149--164, https://doi.org/10.4064/ap-39-1-149-164 .
58. V. I. Smirnov and N. A. Lebedev, Functions of a Complex Variable: Constructive Theory , MIT Press, Cambridge, MA, 1968.
59. P. K. Suetin, Polynomials Orthogonal over a Region and Bieberbach Polynomials , AMS, Providence, RI, 1974.
60. G. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , J. Funct. Anal., 59 (1984), pp. 572--611, https://doi.org/10.1016/0022-1236(84)90066-1 .
61. M. Wala and A. Klo?ckner, Conformal mapping via a density correspondence for the double-layer potential , SIAM J. Sci. Comput., 40 (2018), pp. A3715--A3732, https://doi.org/10.1137/18M1174982 .
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.