최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Remote sensing, v.12 no.20, 2020년, pp.3273 -
Kim, Hyesu (Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon 34134, Korea) , Yu, Jaehyung (Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Korea) , Wang, Lei (Department of Geography & Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA) , Jeong, Yongsik (Satellite Application Division, National Satellite Operation & Application Center, Korea Aerospace Research Institute (KARI), Daejeon 34133, Korea) , Kim, Jieun (Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon 34134, Korea)
This paper illustrates a spectroscopic analysis of heavy metal concentration in mine soils with the consideration of mineral assemblages originated by weathering and mineralization processes. The mine soils were classified into two groups based on the mineral composition: silicate clay mineral group...
Nagajyoti Heavy metals, occurrence and toxicity for plants: A review Environ. Chem. Lett. 2010 10.1007/s10311-010-0297-8 8 199
Lim Heavy Metal Contamination Index Using Spectral Variables for White Precipitates Induced by Acid Mine Drainage: A Case Study of Soro Creek, South Korea IEEE Trans. Geosci. Remote Sens. 2019 10.1109/TGRS.2019.2893664 57 4870
10.3390/rs10111830 Jeong, Y., Yu, J., Wang, L., and Shin, J.H. (2018). Spectral Responses of As and Pb Contamination in Tailings of a Hydrothermal Ore Deposit: A Case Study of Samgwang Mine, South Korea. Remote Sens., 10.
Nriagu A Global Assesment of Natural Sources of Atmospheric Trace Metals Nature 1989 10.1038/338047a0 338 47
Environmental Protection Agency (2020, July 03). Soil Screening Guidance: User’s Guide, Available online: https://www.epa.gov/superfund/superfund-soil-screening-guidance.
Soil Environment Conservation Act (2020, July 03). Act no.15658 Ministry of Environment of Korea: Sejong City, South Korea, Available online: http://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2§ion =lawNm&query=soil&x=0&y=0#liBgcolor15.
Webster Mapping heavy metals in polluted soil by disjunctive kriging Environ. Pollut. 1996 10.1016/S0269-7491(96)00060-7 94 205
Shi Visible and near-infrared reflectance spectroscopy-An alternative for monitoring soil contamination by heavy metals J. Hazard. Mater. 2014 10.1016/j.jhazmat.2013.11.059 265 166
Rathod Proximal Spectral Sensing to Monitor Phytoremediation of Metal-Contaminated Soils Int. J. Phytoremediation 2013 10.1080/15226514.2012.702805 15 405
Rossel Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties Geoderma 2006 10.1016/j.geoderma.2005.03.007 131 59
Choe Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain Remote Sens. Environ. 2008 10.1016/j.rse.2008.03.017 112 3222
Song Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China Int. J. Appl. Earth Obs. Geoinf. 2015 34 1
Vega Competitive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics J. Colloid Interface Sci. 2006 10.1016/j.jcis.2006.01.012 298 582
Brian, J.A. (2013). Heavy Metals in Soils, Springer. [3rd ed.].
Rossel Using data mining to model and interpret soil diffuse reflectance spectra Geoderma 2010 10.1016/j.geoderma.2009.12.025 158 46
Wang Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges ISPRS J. Photogramm. Remote Sens. 2018 10.1016/j.isprsjprs.2017.12.003 136 73
Kemper Estimate of Heavy Metal Contamination in Soils after a Mining Accident Using Reflectance Spectroscopy Environ. Sci. Technol. 2002 10.1021/es015747j 36 2742
Bruce Prediction of lead concentration in soil using reflectance spectroscopy Environ. Technol. Innov. 2014 1 8
Shin Spectral Responses of Heavy Metal Contaminated Soils in the Vicinity of a Hydrothermal Ore Deposit: A Case Study of Boksu Mine, South Korea IEEE Trans. Geosci. Remote Sens. 2019 10.1109/TGRS.2018.2889748 57 4092
Shin Spectral Interference of Heavy Metal Contamination on Spectral Signals of Moisture Content for Heavy Metal Contaminated Soils IEEE Trans. Geosci. Remote Sens. 2020 10.1109/TGRS.2019.2946297 58 2266
Yun Zinc-lead skarns of the Yeonhwa-Ulchin District, South Korea Econ. Geol. 1982 10.2113/gsecongeo.77.4.1013 77 1013
Geological Society of Korea (1999). Geology of Korea, Sigmapress.
Choi Mineralogical and Geochemical Characteristics of the Wolgok-Seongok Orebodies in the Gagok Skarn Deposit: Their Genetic Implications J. Econ. Environ. Geol. 2010 43 477
Kim Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province J. Korean Soc. Environ. Eng. 2005 27 626
U.S. EPA (2020, July 03). Method 6200: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment, Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-6200-field-portable-x-ray-fluorescence-spectrometry-determination.
National Institute Occupational Safety Health (NIOSH) (2020, September 05). Method 7702: Lead by Field Portable XRF, Available online: https://www.cdc.gov/niosh/docs/2003-154/pdfs/7702.pdf.
10.1016/j.geoderma.2011.08.010 Zhu, Y., Weindorf, D.C., and Zhang, W. (2011). Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma, 167-177.
Lawryk Laboratory Evaluation of a Field-Portable Sealed Source X-Ray Fluorescence Spectrometer for Determination of Metals in Air Filter Samples J. Occup. Environ. Hyg. 2009 10.1080/15459620902932119 6 433
Weindorf Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and Albic horizons Geoderma 2012 10.1016/j.geoderma.2012.06.034 189-190 268
Weindorf Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture Environ. Monit. Assess. 2011 10.1007/s10661-011-1961-6 184 217
Weindorf In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania Environ. Pollut. 2013 10.1016/j.envpol.2013.07.008 182 92
Carr Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS Environ. Geochem. Health 2007 10.1007/s10653-007-9106-0 30 45
Rossel Proximal sensing of Cu in soil and lettuce using portable X-ray fluorescence spectrometry Geoderma 2016 10.1016/j.geoderma.2015.11.008 265 6
Savitzky Smoothing and Differentiation of Data by Simplified Least Squares Procedures Anal. Chem. 1964 10.1021/ac60214a047 36 1627
Kokaly Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression Remote Sens. Environ. 1999 10.1016/S0034-4257(98)00084-4 67 267
Baldridge The ASTER spectral library version 2.0 Remote Sens. Environ. 2009 10.1016/j.rse.2008.11.007 113 711
Vasques Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra Geoderma 2008 10.1016/j.geoderma.2008.04.007 146 14
Dunagan Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.) Environ. Pollut. 2007 10.1016/j.envpol.2006.10.023 148 301
Shin Case-Based Regression Models Defining the Relationships Between Moisture Content and Shortwave Infrared Reflectance of Beach Sands IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017 10.1109/JSTARS.2017.2723912 10 4512
Williams, P., and Norris, K. (1987). Near-Infrared Technology in the Agricultural and Food Industries, American Association of Cereal Chemists, Inc.
Chang Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties Soil Sci. Soc. Am. J. 2001 10.2136/sssaj2001.652480x 65 480
Wu Feasibility of Reflectance Spectroscopy for the Assessment of Soil Mercury Contamination Environ. Sci. Technol. 2005 10.1021/es0492642 39 873
Sipos Sorption of copper, zinc and lead on soil mineral phases Chemosphere 2008 10.1016/j.chemosphere.2008.06.046 73 461
Madrid Influence of carbonate on the reaction of heavy metals in soils J. Soil Sci. 1992 10.1111/j.1365-2389.1992.tb00170.x 43 709
Kim Adsorption of Arsenic on Goethite J. Mineral. Soc. Korea 2009 22 177
Pontual, S., Gamsom, P., and Merry, N. (2012). Spectral Interpretation Field Manual: Spectral Analysis Guides for Mineral. Exploration, AusSpec Int.. [1st ed.].
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.