$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Variations in Spectral Signals of Heavy Metal Contamination in Mine Soils Controlled by Mineral Assemblages 원문보기

Remote sensing, v.12 no.20, 2020년, pp.3273 -   

Kim, Hyesu (Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon 34134, Korea) ,  Yu, Jaehyung (Department of Geology and Earth Environmental Sciences, Chungnam National University, Daejeon 34134, Korea) ,  Wang, Lei (Department of Geography & Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA) ,  Jeong, Yongsik (Satellite Application Division, National Satellite Operation & Application Center, Korea Aerospace Research Institute (KARI), Daejeon 34133, Korea) ,  Kim, Jieun (Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon 34134, Korea)

Abstract AI-Helper 아이콘AI-Helper

This paper illustrates a spectroscopic analysis of heavy metal concentration in mine soils with the consideration of mineral assemblages originated by weathering and mineralization processes. The mine soils were classified into two groups based on the mineral composition: silicate clay mineral group...

참고문헌 (53)

  1. 10.1007/0-306-48163-4 Van Breemen, N., and Buurman, P. (2002). Soil Formation, Kluwer Academic Publishers. [2nd ed.]. 

  2. 10.1007/978-94-011-6003-2 Duchaufour, P. (1982). Pedology. Pedogenesis and Classification, George Allen & Unwin. [1st ed.]. 

  3. Nagajyoti Heavy metals, occurrence and toxicity for plants: A review Environ. Chem. Lett. 2010 10.1007/s10311-010-0297-8 8 199 

  4. Lim Heavy Metal Contamination Index Using Spectral Variables for White Precipitates Induced by Acid Mine Drainage: A Case Study of Soro Creek, South Korea IEEE Trans. Geosci. Remote Sens. 2019 10.1109/TGRS.2019.2893664 57 4870 

  5. 10.3390/rs10111830 Jeong, Y., Yu, J., Wang, L., and Shin, J.H. (2018). Spectral Responses of As and Pb Contamination in Tailings of a Hydrothermal Ore Deposit: A Case Study of Samgwang Mine, South Korea. Remote Sens., 10. 

  6. Nriagu A Global Assesment of Natural Sources of Atmospheric Trace Metals Nature 1989 10.1038/338047a0 338 47 

  7. Environmental Protection Agency (2020, July 03). Soil Screening Guidance: User’s Guide, Available online: https://www.epa.gov/superfund/superfund-soil-screening-guidance. 

  8. Soil Environment Conservation Act (2020, July 03). Act no.15658 Ministry of Environment of Korea: Sejong City, South Korea, Available online: http://www.law.go.kr/LSW/eng/engLsSc.do?menuId=2&section =lawNm&query=soil&x=0&y=0#liBgcolor15. 

  9. Webster Mapping heavy metals in polluted soil by disjunctive kriging Environ. Pollut. 1996 10.1016/S0269-7491(96)00060-7 94 205 

  10. Shi Visible and near-infrared reflectance spectroscopy-An alternative for monitoring soil contamination by heavy metals J. Hazard. Mater. 2014 10.1016/j.jhazmat.2013.11.059 265 166 

  11. Rathod Proximal Spectral Sensing to Monitor Phytoremediation of Metal-Contaminated Soils Int. J. Phytoremediation 2013 10.1080/15226514.2012.702805 15 405 

  12. Rossel Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties Geoderma 2006 10.1016/j.geoderma.2005.03.007 131 59 

  13. Choe Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain Remote Sens. Environ. 2008 10.1016/j.rse.2008.03.017 112 3222 

  14. Song Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China Int. J. Appl. Earth Obs. Geoinf. 2015 34 1 

  15. Vega Competitive sorption and desorption of heavy metals in mine soils: Influence of mine soil characteristics J. Colloid Interface Sci. 2006 10.1016/j.jcis.2006.01.012 298 582 

  16. Brian, J.A. (2013). Heavy Metals in Soils, Springer. [3rd ed.]. 

  17. Rossel Using data mining to model and interpret soil diffuse reflectance spectra Geoderma 2010 10.1016/j.geoderma.2009.12.025 158 46 

  18. Wang Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges ISPRS J. Photogramm. Remote Sens. 2018 10.1016/j.isprsjprs.2017.12.003 136 73 

  19. Kemper Estimate of Heavy Metal Contamination in Soils after a Mining Accident Using Reflectance Spectroscopy Environ. Sci. Technol. 2002 10.1021/es015747j 36 2742 

  20. Bruce Prediction of lead concentration in soil using reflectance spectroscopy Environ. Technol. Innov. 2014 1 8 

  21. Shin Spectral Responses of Heavy Metal Contaminated Soils in the Vicinity of a Hydrothermal Ore Deposit: A Case Study of Boksu Mine, South Korea IEEE Trans. Geosci. Remote Sens. 2019 10.1109/TGRS.2018.2889748 57 4092 

  22. Shin Spectral Interference of Heavy Metal Contamination on Spectral Signals of Moisture Content for Heavy Metal Contaminated Soils IEEE Trans. Geosci. Remote Sens. 2020 10.1109/TGRS.2019.2946297 58 2266 

  23. Yun Zinc-lead skarns of the Yeonhwa-Ulchin District, South Korea Econ. Geol. 1982 10.2113/gsecongeo.77.4.1013 77 1013 

  24. Geological Society of Korea (1999). Geology of Korea, Sigmapress. 

  25. Choi Mineralogical and Geochemical Characteristics of the Wolgok-Seongok Orebodies in the Gagok Skarn Deposit: Their Genetic Implications J. Econ. Environ. Geol. 2010 43 477 

  26. Kim Assessment of Pollution Level and Contamination Status on Mine Tailings and Soil in the Vicinity of Disused Metal Mines in Kangwon Province J. Korean Soc. Environ. Eng. 2005 27 626 

  27. Lee Temporal and Spatial Variation and Removal Efficiency of Heavy Metals in the Stream Water Affected by Leachate from the Jiknaegol Tailings Impoundment of the Yeonhwa II Mine J. Soil Groundw. Environ. 2011 10.7857/JSGE.2011.16.1.019 16 19 

  28. U.S. EPA (2020, July 03). Method 6200: Field Portable X-Ray Fluorescence Spectrometry for the Determination of Elemental Concentrations in Soil and Sediment, Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-6200-field-portable-x-ray-fluorescence-spectrometry-determination. 

  29. National Institute Occupational Safety Health (NIOSH) (2020, September 05). Method 7702: Lead by Field Portable XRF, Available online: https://www.cdc.gov/niosh/docs/2003-154/pdfs/7702.pdf. 

  30. 10.1016/j.geoderma.2011.08.010 Zhu, Y., Weindorf, D.C., and Zhang, W. (2011). Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture. Geoderma, 167-177. 

  31. Lawryk Laboratory Evaluation of a Field-Portable Sealed Source X-Ray Fluorescence Spectrometer for Determination of Metals in Air Filter Samples J. Occup. Environ. Hyg. 2009 10.1080/15459620902932119 6 433 

  32. Weindorf Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and Albic horizons Geoderma 2012 10.1016/j.geoderma.2012.06.034 189-190 268 

  33. Weindorf Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture Environ. Monit. Assess. 2011 10.1007/s10661-011-1961-6 184 217 

  34. 10.1016/B978-0-12-656445-7.50005-X Sparks, D.L. (1995). Environmetal Soil Chemistry, Academic Press. [1st ed.]. 

  35. Weindorf In-situ assessment of metal contamination via portable X-ray fluorescence spectroscopy: Zlatna, Romania Environ. Pollut. 2013 10.1016/j.envpol.2013.07.008 182 92 

  36. Carr Identification and mapping of heavy metal pollution in soils of a sports ground in Galway City, Ireland, using a portable XRF analyser and GIS Environ. Geochem. Health 2007 10.1007/s10653-007-9106-0 30 45 

  37. Rossel Proximal sensing of Cu in soil and lettuce using portable X-ray fluorescence spectrometry Geoderma 2016 10.1016/j.geoderma.2015.11.008 265 6 

  38. Savitzky Smoothing and Differentiation of Data by Simplified Least Squares Procedures Anal. Chem. 1964 10.1021/ac60214a047 36 1627 

  39. Kokaly Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression Remote Sens. Environ. 1999 10.1016/S0034-4257(98)00084-4 67 267 

  40. 10.3133/ds231 Clark, R.N., Swayze, G.A., Wise, R.A., Livo, K.E., Hoefen, T.M., Kokaly, R.F., and Sutley, S.J. (2007). USGS Digital Spectral Library splib06a, Data Series 231. 

  41. 10.3133/ds1035 Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K.E., Hoefen, T.M., Pearson, N.C., Wise, R.A., Benzel, W.M., Lowers, H.A., and Driscoll, R.L. (2017). USGS Spectral Library Version 7. Data Ser. 1035. 

  42. Baldridge The ASTER spectral library version 2.0 Remote Sens. Environ. 2009 10.1016/j.rse.2008.11.007 113 711 

  43. Vasques Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra Geoderma 2008 10.1016/j.geoderma.2008.04.007 146 14 

  44. Dunagan Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.) Environ. Pollut. 2007 10.1016/j.envpol.2006.10.023 148 301 

  45. Shin Case-Based Regression Models Defining the Relationships Between Moisture Content and Shortwave Infrared Reflectance of Beach Sands IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017 10.1109/JSTARS.2017.2723912 10 4512 

  46. Williams, P., and Norris, K. (1987). Near-Infrared Technology in the Agricultural and Food Industries, American Association of Cereal Chemists, Inc. 

  47. Chang Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties Soil Sci. Soc. Am. J. 2001 10.2136/sssaj2001.652480x 65 480 

  48. Wu Feasibility of Reflectance Spectroscopy for the Assessment of Soil Mercury Contamination Environ. Sci. Technol. 2005 10.1021/es0492642 39 873 

  49. Sipos Sorption of copper, zinc and lead on soil mineral phases Chemosphere 2008 10.1016/j.chemosphere.2008.06.046 73 461 

  50. Madrid Influence of carbonate on the reaction of heavy metals in soils J. Soil Sci. 1992 10.1111/j.1365-2389.1992.tb00170.x 43 709 

  51. Kim Adsorption of Arsenic on Goethite J. Mineral. Soc. Korea 2009 22 177 

  52. Kim Characterization of Arsenic Adsorption onto Hematite J. Miner. Soc. Korea 2012 10.9727/jmsk.2012.25.4.197 25 197 

  53. Pontual, S., Gamsom, P., and Merry, N. (2012). Spectral Interpretation Field Manual: Spectral Analysis Guides for Mineral. Exploration, AusSpec Int.. [1st ed.]. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로