$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Coupling of non‐ordinary state‐based peridynamics and finite element method with reduced boundary effect

International journal for numerical methods in engineering, v.122 no.16, 2021년, pp.4033 - 4054  

Jin, Suyeong (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Hwang, Young Kwang (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) ,  Hong, Jung‐Wuk (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractIn this study, we propose a new numerical technique to couple non‐ordinary state‐based peridynamics (NOSB‐PD) and the finite element method (FEM), and improve the scheme by implementing an effective boundary imposition method and a stabilization method. This coupling scheme...

Keyword

참고문헌 (76)

  1. de Borst R . Fracture in quasi‐brittle materials: a review of continuum damage‐based approaches . Eng Fract Mech . 2002 ; 69 ( 2 ): 95 ‐ 112 . https://doi.org/10.1016/S0013‐7944(01)00082‐0. 

  2. Areias P , Rabczuk T . Finite strain fracture of plates and shells with configurational forces and edge rotations . Int J Numer Methods Eng . 2013 ; 94 ( 12 ): 1099 ‐ 1122 . https://doi.org/10.1002/nme.4477. 

  3. Chen L , Li B , de Borst R . Energy conservation during remeshing in the analysis of dynamic fracture . Int J Numer Methods Eng . 2019 ; 120 ( 4 ): 433 ‐ 446 . https://doi.org/10.1002/nme.6142. 

  4. Belytschko T , Black T . Elastic crack growth in finite elements with minimal remeshing . Int J Numer Methods Eng . 1999 ; 45 ( 5 ): 601 ‐ 620 . https://doi.org/10.1002/(SICI)1097‐0207(19990620)45:5%3C601::AID‐NME598%3E3.0.CO;2‐S. 

  5. Moës N , Belytschko T . Extended finite element method for cohesive crack growth . Eng Fract Mech . 2002 ; 69 ( 7 ): 813 ‐ 833 . https://doi.org/10.1016/S0013‐7944(01)00128‐X. 

  6. Belytschko T , Liu WK , Moran B , Elkhodary KI . Nonlinear Finite Elements for Continua and Structures . 2nd ed. Hoboken, NJ : John Wiley & Sons ; 2014 . 

  7. Gingold RA , Monaghan JJ . Smoothed particle hydrodynamics: theory and application to non‐spherical stars . Mon Not R Astron Soc . 1977 ; 181 ( 3 ): 375 ‐ 389 . https://doi.org/10.1093/mnras/181.3.375. 

  8. De S , Hong JW , Bathe KJ . On the method of finite spheres in applications: towards the use with ADINA and in a surgical simulator . Comput Mech . 2003 ; 31 : 27 ‐ 37 . https://doi.org/10.1007/s00466‐002‐0390‐3. 

  9. Belytschko T , Lu YY , Gu L . Element‐free Galerkin methods . Int J Numer Methods Eng . 1994 ; 37 ( 2 ): 229 ‐ 256 . https://doi.org/10.1002/nme.1620370205. 

  10. Lee S , Hong JW . Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force . Int J Nav Archit Ocean Eng . 2020 ; 12 : 85 ‐ 101 . https://doi.org/10.1016/j.ijnaoe.2019.07.003. 

  11. Douillet‐Grellier T , Jones BD , Pramanik R , Pan K , Albaiz A , Williams JR . Mixed‐mode fracture modeling with smoothed particle hydrodynamics . Comput Geotech . 2016 ; 79 : 73 ‐ 85 . https://doi.org/10.1016/j.compgeo.2016.06.002. 

  12. Hong JW , Bathe KJ . Coupling and enrichment schemes for finite element and finite sphere discretizations . Comput Struct . 2005 ; 83 ( 17 ): 1386 ‐ 1395 . https://doi.org/10.1016/j.compstruc.2004.12.002. 

  13. Garg S , Pant M . Meshfree methods: a comprehensive review of applications . Int J Comput Methods . 2018 ; 15 ( 04 ): 1830001 . https://doi.org/10.1142/S0219876218300015. 

  14. Schlangen E , Garboczi E . Fracture simulations of concrete using lattice models: computational aspects . Eng Fract Mech . 1997 ; 57 ( 2 ): 319 ‐ 332 . https://doi.org/10.1016/S0013‐7944(97)00010‐6. 

  15. Bolander J , Saito S . Fracture analyses using spring networks with random geometry . Eng Fract Mech . 1998 ; 61 ( 5 ): 569 ‐ 591 . https://doi.org/10.1016/S0013‐7944(98)00069‐1. 

  16. Cusatis G , Pelessone D , Mencarelli A . Lattice discrete particle model (LDPM) for failure behavior of concrete. I: theory . Cem Concr Compos . 2011 ; 33 ( 9 ): 881 ‐ 890 . https://doi.org/10.1016/j.cemconcomp.2011.02.011. 

  17. Eliáš J. Adaptive technique for discrete models of fracture . Int J Solids Struct 2016 ; 100‐101 : 376 ‐ 387 . https://doi.org/10.1016/j.ijsolstr.2016.09.008 

  18. Hwang YK , Bolander JE , Lim YM . Evaluation of dynamic tensile strength of concrete using lattice‐based simulations of spalling tests . Int J Fract . 2020 ; 221 : 191 ‐ 209 . https://doi.org/10.1007/s10704‐020‐00422‐w. 

  19. Asahina D , Aoyagi K , Kim K , Birkholzer JT , Bolander JE . Elastically‐homogeneous lattice models of damage in geomaterials . Comput Geotech . 2017 ; 81 : 195 ‐ 206 . https://doi.org/10.1016/j.compgeo.2016.08.015. 

  20. Rasmussen LL , de Assis AP . Elastically‐homogeneous lattice modelling of transversely isotropic rocks . Comput Geotech . 2018 ; 104 : 96 ‐ 108 . https://doi.org/10.1016/j.compgeo.2018.08.016. 

  21. Nagai K , Sato Y , Ueda T . Mesoscopic simulation of failure of mortar and concrete by 3D RBSM . J Adv Concr Technol . 2005 ; 3 ( 3 ): 385 ‐ 402 . https://doi.org/10.3151/jact.3.385. 

  22. Man HK , van Mier J . Damage distribution and size effect in numerical concrete from lattice analyses . Cem Concr Compos . 2011 ; 33 ( 9 ): 867 ‐ 880 . https://doi.org/10.1016/j.cemconcomp.2011.01.008. 

  23. Silling S . Reformulation of elasticity theory for discontinuities and long‐range forces . J Mech Phys Solids . 2000 ; 48 ( 1 ): 175 ‐ 209 . https://doi.org/10.1016/S0022‐5096(99)00029‐0. 

  24. Liu W , Hong JW . Discretized peridynamics for linear elastic solids . Comput Mech . 2012 ; 50 : 579 ‐ 590 . https://doi.org/10.1007/s00466‐012‐0690‐1. 

  25. Ha YD , Lee J , Hong JW . Fracturing patterns of rock‐like materials in compression captured with peridynamics . Eng Fract Mech . 2015 ; 144 : 176 ‐ 193 . https://doi.org/10.1016/j.engfracmech.2015.06.064. 

  26. Lee J , Hong JW . Dynamic crack branching and curving in brittle polymers . Int J Solids Struct . 2016 ; 100 ( 101 ): 332 ‐ 340 . https://doi.org/10.1016/j.ijsolstr.2016.09.002. 

  27. Lee J , Oh SE , Hong JW . Parallel programming of a peridynamics code coupled with finite element method . Int J Fract . 2017 ; 203 : 99 ‐ 114 . https://doi.org/10.1007/s10704‐016‐0121‐y. 

  28. Liu W , Hong JW . Discretized peridynamics for brittle and ductile solids . Int J Numer Methods Eng . 2012 ; 89 ( 8 ): 1028 ‐ 1046 . https://doi.org/10.1002/nme.3278. 

  29. Silling S , Askari E . A meshfree method based on the peridynamic model of solid mechanics . Comput Struct . 2005 ; 83 ( 17 ): 1526 ‐ 1535 .Advances in Meshfree Methods. https://doi.org/10.1016/j.compstruc.2004.11.026. 

  30. Huang D , Lu G , Qiao P . An improved peridynamic approach for quasi‐static elastic deformation and brittle fracture analysis . Int J Mech Sci . 2015 ; 94‐95 : 111 ‐ 122 . https://doi.org/10.1016/j.ijmecsci.2015.02.018. 

  31. Silling S . Linearized theory of peridynamic states . J Elast . 2010 ; 99 : 85 – 111 . https://doi.org/10.1007/s10659‐009‐9234‐0. 

  32. Silling S , Epton M , Weckner O , Xu J , Askari E . Peridynamic states and constitutive modeling . J Elast . 2007 ; 88 ( 2 ): 151 ‐ 184 . https://doi.org/10.1007/s10659‐007‐9125‐1. 

  33. Le QV , Chan WK , Schwartz J . A two‐dimensional ordinary, state‐based peridynamic model for linearly elastic solids . Int J Numer Methods Eng . 2014 ; 98 ( 8 ): 547 ‐ 561 . https://doi.org/10.1002/nme.4642. 

  34. Butt SN , Timothy JJ , Meschke G . Wave dispersion and propagation in state‐based peridynamics . Comput Mech . 2017 ; 60 : 725 ‐ 738 . https://doi.org/10.1007/s00466‐017‐1439‐7. 

  35. Dipasquale D , Sarego G , Zaccariotto M , Galvanetto U . A discussion on failure criteria for ordinary state‐based peridynamics . Eng Fract Mech . 2017 ; 186 : 378 ‐ 398 . https://doi.org/10.1016/j.engfracmech.2017.10.011. 

  36. Madenci E , Oterkus S . Ordinary state‐based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening . J Mech Phys Solids . 2016 ; 86 : 192 ‐ 219 . https://doi.org/10.1016/j.jmps.2015.09.016. 

  37. Liu Z , Bie Y , Cui Z , Cui X . Ordinary state‐based peridynamics for nonlinear hardening plastic materials' deformation and its fracture process . Eng Fract Mech . 2020 ; 223 : 106782 . https://doi.org/10.1016/j.engfracmech.2019.106782. 

  38. Wang Y , Zhou X , Xu X . Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non‐ordinary state‐based peridynamics . Eng Fract Mech . 2016 ; 163 : 248 ‐ 273 . https://doi.org/10.1016/j.engfracmech.2016.06.013. 

  39. Zhou XP , Wang YT . Numerical simulation of crack propagation and coalescence in pre‐cracked rock‐like Brazilian disks using the non‐ordinary state‐based peridynamics . Int J Rock Mech Min Sci . 2016 ; 89 : 235 ‐ 249 . https://doi.org/10.1016/j.ijrmms.2016.09.010. 

  40. Tupek M , Rimoli J , Radovitzky R . An approach for incorporating classical continuum damage models in state‐based peridynamics . Comput Methods Appl Mech Eng . 2013 ; 263 : 20 ‐ 26 . https://doi.org/10.1016/j.cma.2013.04.012. 

  41. Amani J , Oterkus E , Areias P , Zi G , Nguyen‐Thoi T , Rabczuk T . A non‐ordinary state‐based peridynamics formulation for thermoplastic fracture . Int J Impact Eng . 2016 ; 87 : 83 ‐ 94 . https://doi.org/10.1016/j.ijimpeng.2015.06.019. 

  42. Lai X , Liu L , Li S , Zeleke M , Liu Q , Wang Z . A non‐ordinary state‐based peridynamics modeling of fractures in quasi‐brittle materials . Int J Impact Eng . 2018 ; 111 : 130 ‐ 146 . https://doi.org/10.1016/j.ijimpeng.2017.08.008. 

  43. Breitenfeld M , Geubelle P , Weckner O , Silling S . Non‐ordinary state‐based peridynamic analysis of stationary crack problems . Comput Methods Appl Mech Eng . 2014 ; 272 : 233 ‐ 250 . https://doi.org/10.1016/j.cma.2014.01.002. 

  44. Yaghoobi A , Chorzepa MG . Higher‐order approximation to suppress the zero‐energy mode in non‐ordinary state‐based peridynamics . Comput Struct . 2017 ; 188 : 63 ‐ 79 . https://doi.org/10.1016/j.compstruc.2017.03.019. 

  45. Silling S . Stability of peridynamic correspondence material models and their particle discretizations . Comput Methods Appl Mech Eng . 2017 ; 322 : 42 ‐ 57 . https://doi.org/10.1016/j.cma.2017.03.043. 

  46. Gu X , Madenci E , Zhang Q . Revisit of non‐ordinary state‐based peridynamics . Eng Fract Mech . 2018 ; 190 : 31 ‐ 52 . https://doi.org/10.1016/j.engfracmech.2017.11.039. 

  47. Li P , Hao Z , Zhen W . A stabilized non‐ordinary state‐based peridynamic model . Comput Methods Appl Mech Eng . 2018 ; 339 : 262 ‐ 280 . https://doi.org/10.1016/j.cma.2018.05.002. 

  48. Luo J , Sundararaghavan V . Stress‐point method for stabilizing zero‐energy modes in non‐ordinary state‐based peridynamics . Int J Solids Struct . 2018 ; 150 : 197 ‐ 207 . https://doi.org/10.1016/j.ijsolstr.2018.06.015. 

  49. Javili A , McBride A , Steinmann P . Continuum‐kinematics‐inspired peridynamics. mechanical problems . J Mech Phys Solids . 2019 ; 131 : 125 ‐ 146 . https://doi.org/10.1016/j.jmps.2019.06.016. 

  50. Javili A , Firooz S , McBride A , Steinmann P . The computational framework for continuum‐kinematics‐inspired peridynamics . Comput Mech . 2020 ; 66 : 795 ‐ 824 . https://doi.org/10.1007/s00466‐020‐01885‐3. 

  51. Zhou XP , Tian DL . A novel linear elastic constitutive model for continuum‐kinematics‐inspired peridynamics . Comput Methods Appl Mech Eng . 2021 ; 373 : 113479 . https://doi.org/10.1016/j.cma.2020.113479. 

  52. Chen H . Bond‐associated deformation gradients for peridynamic correspondence model . Mech Res Commun . 2018 ; 90 : 34 ‐ 41 . https://doi.org/10.1016/j.mechrescom.2018.04.004. 

  53. Chen H , Spencer BW . Peridynamic bond‐associated correspondence model: stability and convergence properties . Int J Numer Methods Eng . 2019 ; 117 ( 6 ): 713 ‐ 727 . https://doi.org/10.1002/nme.5973. 

  54. Gu X , Zhang Q , Madenci E , Xia X . Possible causes of numerical oscillations in non‐ordinary state‐based peridynamics and a bond‐associated higher‐order stabilized model . Comput Methods Appl Mech Eng . 2019 ; 357 : 112592 . https://doi.org/10.1016/j.cma.2019.112592. 

  55. Yaghoobi A , Chorzepa MG . Formulation of symmetry boundary modeling in non‐ordinary state‐based peridynamics and coupling with finite element analysis . Math Mech Solids . 2018 ; 23 ( 8 ): 1156 ‐ 1176 . https://doi.org/10.1177/1081286517711495. 

  56. Yang D , He X , Yi S , Deng Y , Liu X . Coupling of peridynamics with finite elements for brittle crack propagation problems . Theor Appl Fract Mech . 2020 ;( 107 ): 102505 . https://doi.org/10.1016/j.tafmec.2020.102505. 

  57. Liu W , Hong JW . A coupling approach of discretized peridynamics with finite element method . Comput Methods Appl Mech Eng . 2012 ; 245‐246 : 163 ‐ 175 . https://doi.org/10.1016/j.cma.2012.07.006. 

  58. Fang G , Liu S , Fu M , Wang B , Wu Z , Liang J . A method to couple state‐based peridynamics and finite element method for crack propagation problem . Mech Res Commun . 2019 ; 95 : 89 ‐ 95 . https://doi.org/10.1016/j.mechrescom.2019.01.005. 

  59. Zheng G , Shen G , Hu P , Xia Y . Coupling approach of isogeometric analysis with non‐ordinary state‐based peridynamics . Eur J Mech A/Solids . 2020 ; 82 : 103981 . https://doi.org/10.1016/j.euromechsol.2020.103981. 

  60. Kulkarni SS , Tabarraei A , Wang X . Study of spurious wave reflection at the interface of peridynamics and finite element regions. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 9: Mechanics of Solids, Structures, and Fluids . Pittsburgh, Pennsylvania, USA. https://doi.org/10.1115/IMECE2018‐86129. 

  61. Curtin WA , Miller RE . Atomistic/continuum coupling in computational materials science . Model Simul Mater Sci Eng . 2003 ; 11 ( 3 ): R33 ‐ R68 . https://doi.org/10.1088/0965‐0393/11/3/201. 

  62. Aubertin P , Réthoré J , de Borst R . A coupled molecular dynamics and extended finite element method for dynamic crack propagation . Int J Numer Methods Eng . 2010 ; 81 ( 1 ): 72 ‐ 88 . https://doi.org/10.1002/nme.2675. 

  63. Dhia HB , Rateau G . The Arlequin method as a flexible engineering design tool . Int J Numer Methods Eng . 2005 ; 62 ( 11 ): 1442‐1462 . https://doi.org/10.1002/nme.1229. 

  64. Xiao S , Belytschko T . A bridging domain method for coupling continua with molecular dynamics . Comput Methods Appl Mech Eng . 2004 ; 193 ( 17 ): 1645 ‐ 1669 . https://doi.org/10.1016/j.cma.2003.12.053. 

  65. Wagner GJ , Liu WK . Coupling of atomistic and continuum simulations using a bridging scale decomposition . J Comput Phys . 2003 ; 190 ( 1 ): 249 ‐ 274 . https://doi.org/10.1016/S0021‐9991(03)00273‐0. 

  66. Tadmor EB , Ortiz M , Phillips R . Quasicontinuum analysis of defects in solids . Philos Mag A . 1996 ; 73 ( 6 ): 1529 ‐ 1563 . https://doi.org/10.1080/01418619608243000. 

  67. Saether E , Yamakov V , Glaessgen EH . An embedded statistical method for coupling molecular dynamics and finite element analyses . Int J Numer Methods Eng . 2009 ; 78 ( 11 ): 1292 ‐ 1319 . https://doi.org/10.1002/nme.2529. 

  68. Wu C , Ren B . A stabilized non‐ordinary state‐based peridynamics for the nonlocal ductile material failure analysis in metal machining process . Comput Methods Appl Mech Eng . 2015 ; 291 : 197 ‐ 215 . https://doi.org/10.1016/j.cma.2015.03.003. 

  69. Li P , Hao Z , Yu S , Zhen W . Implicit implementation of the stabilized non‐ordinary state‐based peridynamic model . Int J Numer Methods Eng . 2020 ; 121 ( 4 ): 571 ‐ 587 . https://doi.org/10.1002/nme.6234. 

  70. Warren TL , Silling SA , Askari A , Weckner O , Epton MA , Xu J . A non‐ordinary state‐based peridynamic method to model solid material deformation and fracture . Int J Solids Struct . 2009 , 46 ( 5 ): 1186 ‐ 1195 . https://doi.org/10.1016/j.ijsolstr.2008.10.029. 

  71. Bathe KJ . Finite Element Procedures . 2nd ed. New York, NY : Prentice Hall, Pearson Education, Inc. ; 2014 . 

  72. Madenci E , Oterkus E . Peridynamic Theory and Its Applications . New York, NY : Springer ; 2014 . 

  73. Macek RW , Silling SA . Peridynamics via finite element analysis . Finite Elem Anal Des . 2007 ; 43 ( 15 ): 1169 ‐ 1178 . https://doi.org/10.1016/j.finel.2007.08.012. 

  74. Hillman M , Pasetto M , Zhou G . Generalized reproducing kernel peridynamics: unification of local and non‐local meshfree methods, non‐local derivative operations, and an arbitrary‐order state‐based peridynamic formulation . Comput Part Mech . 2020 ; 7 ( 2 ): 435 ‐ 469 . https://doi.org/10.1007/s40571‐019‐00266‐9. 

  75. Behzadinasab M , Trask N , Bazilevs Y . A unified, stable and accurate meshfree framework for peridynamic correspondence modeling–Part I: core methods . J Peridyn Nonlocal Modeling . 2021 ; 3 ( 1 ): 24 ‐ 45 . https://doi.org/10.1007/s42102‐020‐00040‐z. 

  76. Winkler B , Hofstetter G , Niederwanger G . Experimental verification of a constitutive model for concrete cracking . Proc Inst Mech Eng L J Mater Des Appl . 2001 ; 215 ( 2 ): 75 ‐ 86 . https://doi.org/10.1177/146442070121500202. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로