최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기International journal for numerical methods in engineering, v.122 no.16, 2021년, pp.4033 - 4054
Jin, Suyeong (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) , Hwang, Young Kwang (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea) , Hong, Jung‐Wuk (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea)
AbstractIn this study, we propose a new numerical technique to couple non‐ordinary state‐based peridynamics (NOSB‐PD) and the finite element method (FEM), and improve the scheme by implementing an effective boundary imposition method and a stabilization method. This coupling scheme...
de Borst R . Fracture in quasi‐brittle materials: a review of continuum damage‐based approaches . Eng Fract Mech . 2002 ; 69 ( 2 ): 95 ‐ 112 . https://doi.org/10.1016/S0013‐7944(01)00082‐0.
Areias P , Rabczuk T . Finite strain fracture of plates and shells with configurational forces and edge rotations . Int J Numer Methods Eng . 2013 ; 94 ( 12 ): 1099 ‐ 1122 . https://doi.org/10.1002/nme.4477.
Chen L , Li B , de Borst R . Energy conservation during remeshing in the analysis of dynamic fracture . Int J Numer Methods Eng . 2019 ; 120 ( 4 ): 433 ‐ 446 . https://doi.org/10.1002/nme.6142.
Belytschko T , Black T . Elastic crack growth in finite elements with minimal remeshing . Int J Numer Methods Eng . 1999 ; 45 ( 5 ): 601 ‐ 620 . https://doi.org/10.1002/(SICI)1097‐0207(19990620)45:5%3C601::AID‐NME598%3E3.0.CO;2‐S.
Moës N , Belytschko T . Extended finite element method for cohesive crack growth . Eng Fract Mech . 2002 ; 69 ( 7 ): 813 ‐ 833 . https://doi.org/10.1016/S0013‐7944(01)00128‐X.
Belytschko T , Liu WK , Moran B , Elkhodary KI . Nonlinear Finite Elements for Continua and Structures . 2nd ed. Hoboken, NJ : John Wiley & Sons ; 2014 .
De S , Hong JW , Bathe KJ . On the method of finite spheres in applications: towards the use with ADINA and in a surgical simulator . Comput Mech . 2003 ; 31 : 27 ‐ 37 . https://doi.org/10.1007/s00466‐002‐0390‐3.
Belytschko T , Lu YY , Gu L . Element‐free Galerkin methods . Int J Numer Methods Eng . 1994 ; 37 ( 2 ): 229 ‐ 256 . https://doi.org/10.1002/nme.1620370205.
Douillet‐Grellier T , Jones BD , Pramanik R , Pan K , Albaiz A , Williams JR . Mixed‐mode fracture modeling with smoothed particle hydrodynamics . Comput Geotech . 2016 ; 79 : 73 ‐ 85 . https://doi.org/10.1016/j.compgeo.2016.06.002.
Hong JW , Bathe KJ . Coupling and enrichment schemes for finite element and finite sphere discretizations . Comput Struct . 2005 ; 83 ( 17 ): 1386 ‐ 1395 . https://doi.org/10.1016/j.compstruc.2004.12.002.
Garg S , Pant M . Meshfree methods: a comprehensive review of applications . Int J Comput Methods . 2018 ; 15 ( 04 ): 1830001 . https://doi.org/10.1142/S0219876218300015.
Schlangen E , Garboczi E . Fracture simulations of concrete using lattice models: computational aspects . Eng Fract Mech . 1997 ; 57 ( 2 ): 319 ‐ 332 . https://doi.org/10.1016/S0013‐7944(97)00010‐6.
Bolander J , Saito S . Fracture analyses using spring networks with random geometry . Eng Fract Mech . 1998 ; 61 ( 5 ): 569 ‐ 591 . https://doi.org/10.1016/S0013‐7944(98)00069‐1.
Cusatis G , Pelessone D , Mencarelli A . Lattice discrete particle model (LDPM) for failure behavior of concrete. I: theory . Cem Concr Compos . 2011 ; 33 ( 9 ): 881 ‐ 890 . https://doi.org/10.1016/j.cemconcomp.2011.02.011.
Eliáš J. Adaptive technique for discrete models of fracture . Int J Solids Struct 2016 ; 100‐101 : 376 ‐ 387 . https://doi.org/10.1016/j.ijsolstr.2016.09.008
Hwang YK , Bolander JE , Lim YM . Evaluation of dynamic tensile strength of concrete using lattice‐based simulations of spalling tests . Int J Fract . 2020 ; 221 : 191 ‐ 209 . https://doi.org/10.1007/s10704‐020‐00422‐w.
Asahina D , Aoyagi K , Kim K , Birkholzer JT , Bolander JE . Elastically‐homogeneous lattice models of damage in geomaterials . Comput Geotech . 2017 ; 81 : 195 ‐ 206 . https://doi.org/10.1016/j.compgeo.2016.08.015.
Rasmussen LL , de Assis AP . Elastically‐homogeneous lattice modelling of transversely isotropic rocks . Comput Geotech . 2018 ; 104 : 96 ‐ 108 . https://doi.org/10.1016/j.compgeo.2018.08.016.
Nagai K , Sato Y , Ueda T . Mesoscopic simulation of failure of mortar and concrete by 3D RBSM . J Adv Concr Technol . 2005 ; 3 ( 3 ): 385 ‐ 402 . https://doi.org/10.3151/jact.3.385.
Man HK , van Mier J . Damage distribution and size effect in numerical concrete from lattice analyses . Cem Concr Compos . 2011 ; 33 ( 9 ): 867 ‐ 880 . https://doi.org/10.1016/j.cemconcomp.2011.01.008.
Silling S . Reformulation of elasticity theory for discontinuities and long‐range forces . J Mech Phys Solids . 2000 ; 48 ( 1 ): 175 ‐ 209 . https://doi.org/10.1016/S0022‐5096(99)00029‐0.
Liu W , Hong JW . Discretized peridynamics for linear elastic solids . Comput Mech . 2012 ; 50 : 579 ‐ 590 . https://doi.org/10.1007/s00466‐012‐0690‐1.
Ha YD , Lee J , Hong JW . Fracturing patterns of rock‐like materials in compression captured with peridynamics . Eng Fract Mech . 2015 ; 144 : 176 ‐ 193 . https://doi.org/10.1016/j.engfracmech.2015.06.064.
Lee J , Hong JW . Dynamic crack branching and curving in brittle polymers . Int J Solids Struct . 2016 ; 100 ( 101 ): 332 ‐ 340 . https://doi.org/10.1016/j.ijsolstr.2016.09.002.
Lee J , Oh SE , Hong JW . Parallel programming of a peridynamics code coupled with finite element method . Int J Fract . 2017 ; 203 : 99 ‐ 114 . https://doi.org/10.1007/s10704‐016‐0121‐y.
Liu W , Hong JW . Discretized peridynamics for brittle and ductile solids . Int J Numer Methods Eng . 2012 ; 89 ( 8 ): 1028 ‐ 1046 . https://doi.org/10.1002/nme.3278.
Silling S , Askari E . A meshfree method based on the peridynamic model of solid mechanics . Comput Struct . 2005 ; 83 ( 17 ): 1526 ‐ 1535 .Advances in Meshfree Methods. https://doi.org/10.1016/j.compstruc.2004.11.026.
Huang D , Lu G , Qiao P . An improved peridynamic approach for quasi‐static elastic deformation and brittle fracture analysis . Int J Mech Sci . 2015 ; 94‐95 : 111 ‐ 122 . https://doi.org/10.1016/j.ijmecsci.2015.02.018.
Silling S . Linearized theory of peridynamic states . J Elast . 2010 ; 99 : 85 – 111 . https://doi.org/10.1007/s10659‐009‐9234‐0.
Silling S , Epton M , Weckner O , Xu J , Askari E . Peridynamic states and constitutive modeling . J Elast . 2007 ; 88 ( 2 ): 151 ‐ 184 . https://doi.org/10.1007/s10659‐007‐9125‐1.
Le QV , Chan WK , Schwartz J . A two‐dimensional ordinary, state‐based peridynamic model for linearly elastic solids . Int J Numer Methods Eng . 2014 ; 98 ( 8 ): 547 ‐ 561 . https://doi.org/10.1002/nme.4642.
Butt SN , Timothy JJ , Meschke G . Wave dispersion and propagation in state‐based peridynamics . Comput Mech . 2017 ; 60 : 725 ‐ 738 . https://doi.org/10.1007/s00466‐017‐1439‐7.
Dipasquale D , Sarego G , Zaccariotto M , Galvanetto U . A discussion on failure criteria for ordinary state‐based peridynamics . Eng Fract Mech . 2017 ; 186 : 378 ‐ 398 . https://doi.org/10.1016/j.engfracmech.2017.10.011.
Madenci E , Oterkus S . Ordinary state‐based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening . J Mech Phys Solids . 2016 ; 86 : 192 ‐ 219 . https://doi.org/10.1016/j.jmps.2015.09.016.
Liu Z , Bie Y , Cui Z , Cui X . Ordinary state‐based peridynamics for nonlinear hardening plastic materials' deformation and its fracture process . Eng Fract Mech . 2020 ; 223 : 106782 . https://doi.org/10.1016/j.engfracmech.2019.106782.
Wang Y , Zhou X , Xu X . Numerical simulation of propagation and coalescence of flaws in rock materials under compressive loads using the extended non‐ordinary state‐based peridynamics . Eng Fract Mech . 2016 ; 163 : 248 ‐ 273 . https://doi.org/10.1016/j.engfracmech.2016.06.013.
Zhou XP , Wang YT . Numerical simulation of crack propagation and coalescence in pre‐cracked rock‐like Brazilian disks using the non‐ordinary state‐based peridynamics . Int J Rock Mech Min Sci . 2016 ; 89 : 235 ‐ 249 . https://doi.org/10.1016/j.ijrmms.2016.09.010.
Tupek M , Rimoli J , Radovitzky R . An approach for incorporating classical continuum damage models in state‐based peridynamics . Comput Methods Appl Mech Eng . 2013 ; 263 : 20 ‐ 26 . https://doi.org/10.1016/j.cma.2013.04.012.
Amani J , Oterkus E , Areias P , Zi G , Nguyen‐Thoi T , Rabczuk T . A non‐ordinary state‐based peridynamics formulation for thermoplastic fracture . Int J Impact Eng . 2016 ; 87 : 83 ‐ 94 . https://doi.org/10.1016/j.ijimpeng.2015.06.019.
Lai X , Liu L , Li S , Zeleke M , Liu Q , Wang Z . A non‐ordinary state‐based peridynamics modeling of fractures in quasi‐brittle materials . Int J Impact Eng . 2018 ; 111 : 130 ‐ 146 . https://doi.org/10.1016/j.ijimpeng.2017.08.008.
Breitenfeld M , Geubelle P , Weckner O , Silling S . Non‐ordinary state‐based peridynamic analysis of stationary crack problems . Comput Methods Appl Mech Eng . 2014 ; 272 : 233 ‐ 250 . https://doi.org/10.1016/j.cma.2014.01.002.
Yaghoobi A , Chorzepa MG . Higher‐order approximation to suppress the zero‐energy mode in non‐ordinary state‐based peridynamics . Comput Struct . 2017 ; 188 : 63 ‐ 79 . https://doi.org/10.1016/j.compstruc.2017.03.019.
Silling S . Stability of peridynamic correspondence material models and their particle discretizations . Comput Methods Appl Mech Eng . 2017 ; 322 : 42 ‐ 57 . https://doi.org/10.1016/j.cma.2017.03.043.
Gu X , Madenci E , Zhang Q . Revisit of non‐ordinary state‐based peridynamics . Eng Fract Mech . 2018 ; 190 : 31 ‐ 52 . https://doi.org/10.1016/j.engfracmech.2017.11.039.
Li P , Hao Z , Zhen W . A stabilized non‐ordinary state‐based peridynamic model . Comput Methods Appl Mech Eng . 2018 ; 339 : 262 ‐ 280 . https://doi.org/10.1016/j.cma.2018.05.002.
Luo J , Sundararaghavan V . Stress‐point method for stabilizing zero‐energy modes in non‐ordinary state‐based peridynamics . Int J Solids Struct . 2018 ; 150 : 197 ‐ 207 . https://doi.org/10.1016/j.ijsolstr.2018.06.015.
Javili A , McBride A , Steinmann P . Continuum‐kinematics‐inspired peridynamics. mechanical problems . J Mech Phys Solids . 2019 ; 131 : 125 ‐ 146 . https://doi.org/10.1016/j.jmps.2019.06.016.
Javili A , Firooz S , McBride A , Steinmann P . The computational framework for continuum‐kinematics‐inspired peridynamics . Comput Mech . 2020 ; 66 : 795 ‐ 824 . https://doi.org/10.1007/s00466‐020‐01885‐3.
Zhou XP , Tian DL . A novel linear elastic constitutive model for continuum‐kinematics‐inspired peridynamics . Comput Methods Appl Mech Eng . 2021 ; 373 : 113479 . https://doi.org/10.1016/j.cma.2020.113479.
Chen H . Bond‐associated deformation gradients for peridynamic correspondence model . Mech Res Commun . 2018 ; 90 : 34 ‐ 41 . https://doi.org/10.1016/j.mechrescom.2018.04.004.
Chen H , Spencer BW . Peridynamic bond‐associated correspondence model: stability and convergence properties . Int J Numer Methods Eng . 2019 ; 117 ( 6 ): 713 ‐ 727 . https://doi.org/10.1002/nme.5973.
Gu X , Zhang Q , Madenci E , Xia X . Possible causes of numerical oscillations in non‐ordinary state‐based peridynamics and a bond‐associated higher‐order stabilized model . Comput Methods Appl Mech Eng . 2019 ; 357 : 112592 . https://doi.org/10.1016/j.cma.2019.112592.
Yaghoobi A , Chorzepa MG . Formulation of symmetry boundary modeling in non‐ordinary state‐based peridynamics and coupling with finite element analysis . Math Mech Solids . 2018 ; 23 ( 8 ): 1156 ‐ 1176 . https://doi.org/10.1177/1081286517711495.
Yang D , He X , Yi S , Deng Y , Liu X . Coupling of peridynamics with finite elements for brittle crack propagation problems . Theor Appl Fract Mech . 2020 ;( 107 ): 102505 . https://doi.org/10.1016/j.tafmec.2020.102505.
Liu W , Hong JW . A coupling approach of discretized peridynamics with finite element method . Comput Methods Appl Mech Eng . 2012 ; 245‐246 : 163 ‐ 175 . https://doi.org/10.1016/j.cma.2012.07.006.
Fang G , Liu S , Fu M , Wang B , Wu Z , Liang J . A method to couple state‐based peridynamics and finite element method for crack propagation problem . Mech Res Commun . 2019 ; 95 : 89 ‐ 95 . https://doi.org/10.1016/j.mechrescom.2019.01.005.
Zheng G , Shen G , Hu P , Xia Y . Coupling approach of isogeometric analysis with non‐ordinary state‐based peridynamics . Eur J Mech A/Solids . 2020 ; 82 : 103981 . https://doi.org/10.1016/j.euromechsol.2020.103981.
Kulkarni SS , Tabarraei A , Wang X . Study of spurious wave reflection at the interface of peridynamics and finite element regions. Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Volume 9: Mechanics of Solids, Structures, and Fluids . Pittsburgh, Pennsylvania, USA. https://doi.org/10.1115/IMECE2018‐86129.
Curtin WA , Miller RE . Atomistic/continuum coupling in computational materials science . Model Simul Mater Sci Eng . 2003 ; 11 ( 3 ): R33 ‐ R68 . https://doi.org/10.1088/0965‐0393/11/3/201.
Aubertin P , Réthoré J , de Borst R . A coupled molecular dynamics and extended finite element method for dynamic crack propagation . Int J Numer Methods Eng . 2010 ; 81 ( 1 ): 72 ‐ 88 . https://doi.org/10.1002/nme.2675.
Dhia HB , Rateau G . The Arlequin method as a flexible engineering design tool . Int J Numer Methods Eng . 2005 ; 62 ( 11 ): 1442‐1462 . https://doi.org/10.1002/nme.1229.
Xiao S , Belytschko T . A bridging domain method for coupling continua with molecular dynamics . Comput Methods Appl Mech Eng . 2004 ; 193 ( 17 ): 1645 ‐ 1669 . https://doi.org/10.1016/j.cma.2003.12.053.
Wagner GJ , Liu WK . Coupling of atomistic and continuum simulations using a bridging scale decomposition . J Comput Phys . 2003 ; 190 ( 1 ): 249 ‐ 274 . https://doi.org/10.1016/S0021‐9991(03)00273‐0.
Tadmor EB , Ortiz M , Phillips R . Quasicontinuum analysis of defects in solids . Philos Mag A . 1996 ; 73 ( 6 ): 1529 ‐ 1563 . https://doi.org/10.1080/01418619608243000.
Saether E , Yamakov V , Glaessgen EH . An embedded statistical method for coupling molecular dynamics and finite element analyses . Int J Numer Methods Eng . 2009 ; 78 ( 11 ): 1292 ‐ 1319 . https://doi.org/10.1002/nme.2529.
Wu C , Ren B . A stabilized non‐ordinary state‐based peridynamics for the nonlocal ductile material failure analysis in metal machining process . Comput Methods Appl Mech Eng . 2015 ; 291 : 197 ‐ 215 . https://doi.org/10.1016/j.cma.2015.03.003.
Li P , Hao Z , Yu S , Zhen W . Implicit implementation of the stabilized non‐ordinary state‐based peridynamic model . Int J Numer Methods Eng . 2020 ; 121 ( 4 ): 571 ‐ 587 . https://doi.org/10.1002/nme.6234.
Warren TL , Silling SA , Askari A , Weckner O , Epton MA , Xu J . A non‐ordinary state‐based peridynamic method to model solid material deformation and fracture . Int J Solids Struct . 2009 , 46 ( 5 ): 1186 ‐ 1195 . https://doi.org/10.1016/j.ijsolstr.2008.10.029.
Bathe KJ . Finite Element Procedures . 2nd ed. New York, NY : Prentice Hall, Pearson Education, Inc. ; 2014 .
Madenci E , Oterkus E . Peridynamic Theory and Its Applications . New York, NY : Springer ; 2014 .
Macek RW , Silling SA . Peridynamics via finite element analysis . Finite Elem Anal Des . 2007 ; 43 ( 15 ): 1169 ‐ 1178 . https://doi.org/10.1016/j.finel.2007.08.012.
Hillman M , Pasetto M , Zhou G . Generalized reproducing kernel peridynamics: unification of local and non‐local meshfree methods, non‐local derivative operations, and an arbitrary‐order state‐based peridynamic formulation . Comput Part Mech . 2020 ; 7 ( 2 ): 435 ‐ 469 . https://doi.org/10.1007/s40571‐019‐00266‐9.
Behzadinasab M , Trask N , Bazilevs Y . A unified, stable and accurate meshfree framework for peridynamic correspondence modeling–Part I: core methods . J Peridyn Nonlocal Modeling . 2021 ; 3 ( 1 ): 24 ‐ 45 . https://doi.org/10.1007/s42102‐020‐00040‐z.
Winkler B , Hofstetter G , Niederwanger G . Experimental verification of a constitutive model for concrete cracking . Proc Inst Mech Eng L J Mater Des Appl . 2001 ; 215 ( 2 ): 75 ‐ 86 . https://doi.org/10.1177/146442070121500202.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.