$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Fe2O3 hierarchical tubular structure decorated with cobalt phosphide (CoP) nanoparticles for efficient photoelectrochemical water splitting

Chemical engineering journal, v.417, 2021년, pp.129278 -   

Quang, Nguyen Duc (Department of Materials Science and Engineering, Chungnam National University) ,  Hu, Weiguang (Graduate School of Energy Science and Technology, Chungnam National University) ,  Chang, Hyo Sik (Graduate School of Energy Science and Technology, Chungnam National University) ,  Van, Phuoc Cao (Department of Materials Science and Engineering, Chungnam National University) ,  Viet, Duc Duong (Department of Materials Science and Engineering, Chungnam National University) ,  Jeong, Jong-Ryul (Department of Materials Science and Engineering, Chungnam National University) ,  Seo, Dong‑Bum (Department of Materials Science and Engineering, Chungnam National University) ,  Kim, Eui‑Tae (Department of Materials Science and Engineering, Chungnam National University) ,  Kim, Chunjoong (Department of Materials Science and Engineering, Chungnam Nati) ,  Kim, Dojin

Abstract AI-Helper 아이콘AI-Helper

Abstract Severe charge recombination and poor water oxidation kinetics limit the performance of hematite-based (Fe2O3) photoanodes far from their theoretical levels and restrict their applicability for photoelectrochemical (PEC) water splitting devices. In this study, a hierarchical tubular structu...

Keyword

참고문헌 (51)

  1. Nature Fujishima 238 5358 37 1972 10.1038/238037a0 Electrochemical photolysis of water at a semiconductor electrode 

  2. Science Kim 343 990 2014 10.1126/science.1246913 Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting 

  3. Nat. Rev. Mater. Sivula 1 15010 2016 10.1038/natrevmats.2015.10 Semiconducting materials for photoelectrochemical energy conversion 

  4. Chem. Soc. Rev. Kment 46 12 3716 2017 10.1039/C6CS00015K Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures 

  5. Angew. Chem. Int. Ed. Luo 56 42 12878 2017 10.1002/anie.201705772 Dendritic hematite nanoarray photoanode modified with a conformal titanium dioxide interlayer for effective charge collection 

  6. Appl. Catal. B Lianos 210 235 2017 10.1016/j.apcatb.2017.03.067 Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen 

  7. Chem. Rev. Wang 119 8 5192 2019 10.1021/acs.chemrev.8b00584 Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting 

  8. Nano Today He 28 2019 10.1016/j.nantod.2019.100763 State-of-the-art progress in the use of ternary metal oxides as photoelectrode materials for water splitting and organic synthesis 

  9. Chem. Eng. J. Zhou 371 885 2019 10.1016/j.cej.2019.04.124 High-performance photoelectrochemical water splitting of BiVO4@Co-MIm prepared by a facile in-situ deposition method 

  10. Angew. Chem. Int. Ed. Wang 59 1 136 2020 10.1002/anie.201900292 Perovskite oxide based electrodes for high-performance photoelectrochemical water splitting 

  11. Adv. Energy Mater. Concina 7 2017 Semiconducting metal oxide nanostructures for water splitting and photovoltaics 

  12. Chem. Soc. Rev. Yang 48 19 4979 2019 10.1039/C8CS00997J Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting 

  13. Adv. Energy Mater. Yang 7 2017 10.1002/aenm.201700555 Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting 

  14. Chem. Eng. J. Thakur 397 2020 10.1016/j.cej.2020.125415 Current progress and challenges in photoelectrode materials for the production of hydrogen 

  15. ACS Appl. Mater. Interfaces Liao 10 12 10141 2018 10.1021/acsami.8b00367 Quasi-topotactic transformation of FeOOH nanorods to robust Fe2O3 porous nanopillars triggered with a facile rapid dehydration strategy for efficient photoelectrochemical water splitting 

  16. Angew. Chem. Int. Ed. Zhang 59 23 9047 2020 10.1002/anie.202001919 Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation 

  17. Chem. Sci. Zhang 10 44 10436 2019 10.1039/C9SC04110A Activating the surface and bulk of hematite photoanodes to improve solar water splitting 

  18. Appl. Catal. B Chen 265 2020 10.1016/j.apcatb.2019.118580 Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method 

  19. Nat. Commun. Jian 10 2609 2019 10.1038/s41467-019-10543-z Embedding laser generated nanocrystals in BiVO4 photoanode for efficient photoelectrochemical water splitting 

  20. Appl. Catal. B Zhang 277 2020 10.1016/j.apcatb.2020.119197 An efficient hole transfer pathway on hematite integrated by ultrathin Al2O3 interlayer and novel CuCoOx cocatalyst for efficient photoelectrochemical water oxidation 

  21. J. Electrochem. Soc. Quang 163 6 H434 2016 10.1149/2.1041606jes Three-dimensional hierarchical structures of TiO2/CdS branched core-shell nanorods as a high-performance photoelectrochemical cell electrode for hydrogen production 

  22. Nano Energy Lee 32 397 2017 10.1016/j.nanoen.2016.12.058 In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries 

  23. Small Gao 10 9 1741 2014 10.1002/smll.201303818 Hierarchical tubular structures constructed by carbon-coated α-Fe2O3 nanorods for highly reversible lithium storage 

  24. J. Alloy. Compd. Gu 714 6 2017 10.1016/j.jallcom.2017.04.216 Synthesis of hierarchical α-Fe2O3 nanotubes for high-performance lithium-ion batteries 

  25. Adv. Energy Mater. Cong 7 1601906 2017 10.1002/aenm.201601906 Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries 

  26. J. Mater. Chem. A Song 8 7 3754 2020 10.1039/C9TA12052A Nanosheet-assembled, hollowed-out hierarchical γ-Fe2O3 microrods for high-performance gas sensing 

  27. J. Mater. Chem. A Zhao 8 31 15976 2020 10.1039/D0TA03698F Photothermal effect-enhanced photoelectrochemical water splitting of a BiVO4 photoanode modified with dual-functional polyaniline 

  28. J. Electrochem. Soc. Hien 166 15 H743 2019 10.1149/2.0621914jes Sn doping into hematite nanorods for high-performance photoelectrochemical water splitting 

  29. Appl. Catal. B Zhou 266 2020 10.1016/j.apcatb.2019.118513 Preparation of heterometallic CoNi-MOFs-modified BiVO4: a steady photoanode for improved performance in photoelectrochemical water splitting 

  30. Chem. Eng. J. Yu 404 2021 10.1016/j.cej.2020.126458 Enhanced photoelectrochemical water-splitting performance with a hierarchical heterostructure: Co3O4 nanodots anchored TiO2@P-C3N4 core-shell nanorod arrays 

  31. J. Mater. Chem. A Kim 6 3 1266 2018 10.1039/C7TA09134F A precious metal-free solar water splitting cell with a bifunctional cobalt phosphide electrocatalyst and doubly promoted bismuth vanadate photoanode 

  32. ACS Sustainable Chem. Eng. Tong 7 1 769 2019 10.1021/acssuschemeng.8b04405 Boosting photoelectrochemical water oxidation with cobalt phosphide nanosheets on porous BiVO4 

  33. Electrochim. Acta Li 307 92 2019 10.1016/j.electacta.2019.03.183 Electrodeposition of a cobalt phosphide film for the enhanced photoelectrochemical water oxidation with α-Fe2O3 photoanode 

  34. J. Catal. Jiang 366 275 2018 10.1016/j.jcat.2018.07.037 A highly efficient photoelectrochemical cell using cobalt phosphide-modified nanoporous hematite photoanode for solar-driven water splitting 

  35. J. Phys. Chem. C Xiao 114 3 1694 2010 10.1021/jp909386d Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction 

  36. ChemSusChem Li 11 2156 2018 10.1002/cssc.201800571 NiO nanoparticles anchored on phosphorus-doped α-Fe2O3 nanoarrays: an efficient hole extraction p-n heterojunction photoanode for water oxidation 

  37. Adv. Sci. Yu 5 2018 10.1002/advs.201800514 Bifunctionality from synergy: CoP nanoparticles embedded in amorphous CoOx nanoplates with heterostructures for highly efficient water electrolysis 

  38. Nano Energy Das 30 303 2016 10.1016/j.nanoen.2016.10.024 One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting 

  39. Nano Energy Bassi 22 310 2016 10.1016/j.nanoen.2016.02.013 Crystalline Fe2O3/Fe2TiO5 heterojunction nanorods with efficient charge separation and hole injection as photoanode for solar water oxidation 

  40. J. Am. Chem. Soc. Sivula 132 21 7436 2010 10.1021/ja101564f Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach 

  41. Nano Lett. Ling 11 5 2119 2011 10.1021/nl200708y Sn-doped hematite nanostructures for photoelectrochemical water splitting 

  42. Nano Lett. Li 17 4 2490 2017 10.1021/acs.nanolett.7b00184 Morphology and doping engineering of Sn-doped hematite nanowire photoanodes 

  43. Nat. Commun. Fan 9 1809 2018 10.1038/s41467-018-04248-y Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting 

  44. Appl. Catal. B Feng 257 2019 10.1016/j.apcatb.2019.117900 High-crystalline and high-aspect-ratio hematite nanotube photoanode for efficient solar water splitting 

  45. ACS Catal. Ahn 8 12 11932 2018 10.1021/acscatal.8b03184 Boron doping of metal-doped hematite for reduced surface recombination in water splitting 

  46. Nanoscale Ma 10 47 22560 2018 10.1039/C8NR07277A Highly self-diffused Sn doping in α-Fe2O3 nanorod photoanodes initiated from β-FeOOH nanorod/FTO by hydrogen treatment for solar water oxidation 

  47. J. Mater. Chem. A Li 6 27 13412 2018 10.1039/C8TA05194A Facile regrowth of Mg-Fe2O3/P-Fe2O3 homojunction photoelectrode for efficient solar water oxidation 

  48. Appl. Catal. B Long 257 2019 10.1016/j.apcatb.2019.117813 Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting 

  49. Adv. Mater. Xu 28 30 6442 2016 10.1002/adma.201600005 A perovskite electrocatalyst for efficient hydrogen evolution reaction 

  50. Nano Energy Hien 57 660 2019 10.1016/j.nanoen.2018.12.093 Energy diagram analysis of photoelectrochemical water splitting process 

  51. Electrochim. Acta Quang 364 2020 10.1016/j.electacta.2020.137283 Co3O4/reduced graphene oxide/BiVO4 nanorod as high performance photoanode for water oxidation 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로