$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Lean combustion of stratified hydrogen in a constant volume chamber

Fuel, v.301, 2021년, pp.121045 -   

Lee, Sanguk (Corresponding author.) ,  Kim, Gyeonggon ,  Bae, Choongsik

Abstract AI-Helper 아이콘AI-Helper

Abstract To mitigate carbon emissions from the transportation sector, the application of hydrogen as a fuel for internal combustion engines was investigated. Owing to the merits of employing hydrogen in lean-burn spark-ignition engines, hydrogen stratified charge combustion (SCC) was tested in a co...

Keyword

참고문헌 (48)

  1. SAE Tech Pap Kuroki 2010 10.4271/2010-01-0581 Study of high efficiency zero-emission argon circulated hydrogen engine 

  2. Carolina ANA, Bontorin B, Carvalho LDEO, Carolina A, Bontorin B. SAE TECHNICAL Investigation of the Impact of Lean Mixtures on the Performance of GDI Engines Investigation of the Impa act of Lean Mixtures on the Performa ance of GDI Engines the improvement in fuel 2019. 

  3. SAE Int J Engines Shi 8 3 1246 2015 10.4271/2015-01-1043 Fuel-dithering optimization of efficiency of TWC on natural gas IC engine 

  4. Int J Hydrogen Energy Verhelst 39 2 1071 2014 10.1016/j.ijhydene.2013.10.102 Recent progress in the use of hydrogen as a fuel for internal combustion engines 

  5. Fuel Lee 128 381 2014 10.1016/j.fuel.2014.03.010 High power performance with zero NOx emission in a hydrogen-fueled spark ignition engine by valve timing and lean boosting 

  6. Fuel Jiang 285 119113 2021 10.1016/j.fuel.2020.119113 Engine performance and emissions of furan-series biofuels under stratified lean-burn combustion mode 

  7. 10.4271/2007-24-0030 Ayala FA, Heywood JB. Lean SI Engines: The role of combustion variability in defining lean limits. SAE Tech Pap 2007;2007-Septe. https://doi.org/10.4271/2007-24-0030. 

  8. Fuel Prasad 190 318 2017 10.1016/j.fuel.2016.11.003 Laser ignition and flame kernel characterization of HCNG in a constant volume combustion chamber 

  9. Combust Flame Aleiferis 136 3 283 2004 10.1016/j.combustflame.2003.08.011 The nature of early flame development in a lean-burn stratified-charge spark-ignition engine 

  10. Combust Flame Hwang 167 86 2016 10.1016/j.combustflame.2016.02.023 Microwave-assisted plasma ignition in a constant volume combustion chamber 

  11. Int J Hydrogen Energy Dharamshi 39 1 593 2014 10.1016/j.ijhydene.2013.10.045 Combustion characteristics and flame-kernel development of a laser ignited hydrogen-air mixture in a constant volume combustion chamber 

  12. 10.4271/2016-01-2176 Schumacher M, Wensing M. A Gasoline Fuelled Pre-Chamber Ignition System for Homogeneous Lean Combustion Processes. SAE Tech Pap 2016;2016-Octob. https://doi.org/10.4271/2016-01-2176. 

  13. Fuel Gong 279 118427 2020 10.1016/j.fuel.2020.118427 Numerical study of twin-spark plug arrangement effects on flame, combustion and emissions of a medium compression ratio direct-injection methanol engine 

  14. Fuel Prasad 276 118071 2020 10.1016/j.fuel.2020.118071 Effect of spark timing on laser ignition and spark ignition modes in a hydrogen enriched compressed natural gas fuelled engine 

  15. Appl Energy Gong 261 114478 2020 10.1016/j.apenergy.2019.114478 Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios 

  16. 10.4271/2019-01-0083 Melaika M, Andersson M, Dahlander P. Methane Direct Injection in an Optical SI Engine - Comparison between Different Combustion Modes. SAE Tech Pap 2019;2019-Janua:1-19. https://doi.org/10.4271/2019-01-0083. 

  17. Appl Energy Kim 194 123 2017 10.1016/j.apenergy.2017.03.012 Evaluation of injection and ignition schemes for the ultra-lean combustion direct-injection LPG engine to control particulate emissions 

  18. Fuel Luo 234 56 2018 10.1016/j.fuel.2018.07.021 Effect of temperature on fuel adhesion under spray-wall impingement condition 

  19. Fuel Jung 187 146 2017 10.1016/j.fuel.2016.08.085 Combustion characteristics of gasoline and n-butane under lean stratified mixture conditions in a spray-guided direct injection spark ignition engine 

  20. 10.4271/2003-01-3094 Shudo T, Cheng WK, Kuninaga T, Hasegawa T. Reduction of cooling loss in hydrogen combustion by direct injection stratified charge. SAE Tech Pap 2003. https://doi.org/10.4271/2003-01-3094. 

  21. SAE Tech Pap Park 2 2013 10.4271/2013-01-1323 Emission characteristics of gasoline and lpg in a spray-guided-type direct injection engine 

  22. 10.4271/2019-01-0253 Lee S, Park S, Bae C. Particle reduction in LPG lean stratified combustion by intake strategies. SAE Tech Pap 2019;2019-April:1-14. https://doi.org/10.4271/2019-01-0253. 

  23. Park S, Lee S, Bae C. Spark ignited flame propagation of lean stratified air-gasoline mix- ture in a Constant Volume Combustion Chamber. THIESEL 2018 Conf Thermo- Fluid Dyn Process Direct Inject Engines High-Pressure 2018;C:1-14. 

  24. Int J Hydrogen Energy Li 44 21 11194 2019 10.1016/j.ijhydene.2019.02.222 Effects of split injection proportion and the second injection timings on the combustion and emissions of a dual fuel SI engine with split hydrogen direct injection 

  25. Fuel Manoj Babu 285 119189 2021 10.1016/j.fuel.2020.119189 Analysis of performance, emission, combustion and endoscopic visualization of micro-arc oxidation piston coated SI engine fuelled with low carbon biofuel blends 

  26. Appl Energy Hwang 206 1203 2017 10.1016/j.apenergy.2017.10.027 Investigations on air-fuel mixing and flame characteristics of biodiesel fuels for diesel engine application 

  27. Int J Hydrogen Energy WHITE 31 10 1292 2006 10.1016/j.ijhydene.2005.12.001 The hydrogen-fueled internal combustion engine: a technical review 

  28. Fuel Leng 290 119966 2021 10.1016/j.fuel.2020.119966 Effects of hydrogen enrichment on the combustion and emission characteristics of a turbulent jet ignited medium speed natural gas engine: a numerical study 

  29. Int J Hydrogen Energy Yu 44 26 13988 2019 10.1016/j.ijhydene.2019.03.236 Experimental study on lean-burn characteristics of an SI engine with hydrogen/gasoline combined injection and EGR 

  30. SAE Tech Pap Wallner 2007 10.4271/2007-01-1464 Investigation of injection parameters in a hydrogen di engine using an endoscopic access to the combustion chamber 

  31. Int J Hydrogen Energy MA 32 18 5067 2007 10.1016/j.ijhydene.2007.07.048 Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine 

  32. Int J Hydrogen Energy Ji 35 3 1453 2010 10.1016/j.ijhydene.2009.11.051 Experimental study on combustion and emissions performance of a hybrid hydrogen-gasoline engine at lean burn limits 

  33. Fuel Gong 260 116403 2020 10.1016/j.fuel.2019.116403 Research on the performance of a hydrogen/methanol dual-injection assisted spark-ignition engine using late-injection strategy for methanol 

  34. Fuel Gong 262 116463 2020 10.1016/j.fuel.2019.116463 Experimental investigation of equivalence ratio effects on combustion and emissions characteristics of an H2/methanol dual-injection engine under different spark timings 

  35. Int J Hydrogen Energy Lee 46 5 4538 2021 10.1016/j.ijhydene.2020.11.001 Behavior of hydrogen hollow-cone spray depending on the ambient pressure 

  36. Combust Flame Wolk 160 7 1225 2013 10.1016/j.combustflame.2013.02.004 Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber 

  37. Meas Sci Technol Huang 19 8 085406 2008 10.1088/0957-0233/19/8/085406 Flame colour characterization in the visible and infrared spectrum using a digital camera and image processing 

  38. Fuel Kim 291 120043 2021 10.1016/j.fuel.2020.120043 Characterization of combustion process and emissions in a natural gas/diesel dual-fuel compression-ignition engine 

  39. 10.1109/TSMC.1979.4310076 Otsu N. Threshold Selection Method From Gray-Level Histograms. IEEE Trans Syst Man Cybern 1979;SMC-9:62-6. https://doi.org/10.1109/TSMC.1979.4310076. 

  40. SAE Tech Pap Roy 5 3 1414 2012 High-pressure hydrogen jet and combustion characteristics in a direct-injection hydrogen engine 

  41. Int J Hydrogen Energy Kuznetsov 37 22 17580 2012 10.1016/j.ijhydene.2012.05.049 Flammability limits and laminar flame speed of hydrogen-air mixtures at sub-atmospheric pressures 

  42. Energy Song 93 1758 2015 10.1016/j.energy.2015.10.058 Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine 

  43. Proc Imp Acad Kitagawa 12 9 281 1936 10.2183/pjab1912.12.281 The Formation of the Activated Water Molecules in High Vibrational States in the Oxy-Hydrogen Flame 

  44. 1974 The Spectroscopy of Flames 

  45. Combust Flame Schefer 156 6 1234 2009 10.1016/j.combustflame.2009.01.011 Visible emission of hydrogen flames 

  46. Nature Gaydon 151 645 1943 Flame spectra in the photographic infra-red 

  47. Diederichsen J, Wikfgard H. Spectrographic examination of gaseous flames at high pressure 1940. 

  48. Trans Faraday Soc Padley 56 449 1960 10.1039/tf9605600449 The origin of the blue continuum in the hydrogen flame 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로