$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Microbial production of nematicidal agents for controlling plant-parasitic nematodes

Process biochemistry, v.108, 2021년, pp.69 - 79  

Seong, Jaemin (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ,  Shin, Jongoh (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ,  Kim, Kangsan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ,  Cho, Byung-Kwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)

Abstract AI-Helper 아이콘AI-Helper

Abstract Despite the serious damage of a wide range of agriculture and forestry by plant-parasitic nematodes, the use of many chemical pesticides has been declining in recent years due to concerns about their toxicity, tolerance, and environmental persistence issues. Therefore, there is an urgent n...

Keyword

참고문헌 (138)

  1. Coghlan 1 2005 WormBook Nematode genome evolution 

  2. Appl. Microbiol. Biotechnol. Degenkolb 100 9 3799 2016 10.1007/s00253-015-7233-6 Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes 

  3. Curr. Biol. Kiontke 23 19 R862 2013 10.1016/j.cub.2013.08.009 Nematodes 

  4. Nicol 21 2011 Genomics and Molecular Genetics of Plant-Nematode Interactions Current nematode threats to world agriculture 

  5. Front. Microbiol. Wolfgang 10 2019 10.3389/fmicb.2019.01296 Novel strategies for soil-borne diseases: exploiting the microbiome and volatile-based mechanisms toward controlling meloidogyne-based disease complexes 

  6. Am. J. Trop. Med. Hyg. Villalta 36 3 529 1987 10.4269/ajtmh.1987.36.529 Insect-borne and culture-derived metacyclic Trypanosoma cruzi: differences in infectivity and virulence 

  7. FEMS Microbiol. Ecol. Tian 61 2 197 2007 10.1111/j.1574-6941.2007.00349.x Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects 

  8. Sci. Rep. Gao 6 2016 Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine 

  9. J. Basic Microbiol. Zeng 55 10 1239 2015 10.1002/jobm.201400798 Isolation and identification of chemical constituents from the bacterium Bacillus sp. And their nematicidal activities 

  10. Proc. Natl. Acad. Sci. U. S. A. Yagi 90 18 8420 1993 10.1073/pnas.90.18.8420 Agricultural soil fumigation as a source of atmospheric methyl bromide 

  11. Mutat. Res. Whorton 123 1 13 1983 10.1016/0165-1110(83)90044-1 Mutagenicity, carcinogenicity and reproductive effects of dibromochloropropane (DBCP) 

  12. Annu. Rev. Phytopathol. Chitwood 40 221 2002 10.1146/annurev.phyto.40.032602.130045 Phytochemical based strategies for nematode control 

  13. J. Agric. Food Chem. Ntalli 60 40 9929 2012 10.1021/jf303107j Botanical nematicides: a review 

  14. Front. Plant Sci. Palomares-Rius 8 2017 10.3389/fpls.2017.01987 Anatomical alterations in plant tissues induced by plant-parasitic nematodes 

  15. Decraemer 2006 Structure and Classification 

  16. Annu. Rev. Phytopathol. Li 53 67 2015 10.1146/annurev-phyto-080614-120336 Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes 

  17. Mol. Plant Pathol. Jones 14 9 946 2013 10.1111/mpp.12057 Top 10 plant-parasitic nematodes in molecular plant pathology 

  18. Front. Plant Sci. Mejias 10 2019 10.3389/fpls.2019.00970 Plant proteins and processes targeted by parasitic nematode effectors 

  19. Plant Dis. Ichihara 84 6 675 2000 10.1094/PDIS.2000.84.6.675 Early symptom development and histological changes associated with migration of Bursaphelenchus xylophilus in seedling tissues of Pinus thunbergii 

  20. Trends Parasitol. Zhao 30 6 299 2014 10.1016/j.pt.2014.04.007 Interspecific communication between pinewood nematode, its insect vector, and associated microbes 

  21. Anke 151 2011 Industrial Applications Insecticidal and nematicidal metabolites from fungi 

  22. Recent Pat. Biotechnol. Li 1 3 212 2007 10.2174/187220807782330165 Nematicidal substances from fungi 

  23. Annu. Rev. Phytopathol. Kerry 38 423 2000 10.1146/annurev.phyto.38.1.423 Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes 

  24. Pest Manag. Sci. Meyer 59 6-7 665 2003 10.1002/ps.708 United states department of agriculture-agricultural research service research programs on microbes for management of plant-parasitic nematodes 

  25. J. Nematol. Noel 22 4S 763 1990 Evaluation of thuringiensin for control of Heterodera glycines on soybean 

  26. Biochim. Biophys. Acta Sebesta 209 2 357 1970 10.1016/0005-2787(70)90734-3 Mechanism of inhibition of DNA-dependent RNA polymerase by exotoxin of Bacillus thuringiensis 

  27. J. Biol. Chem. Du 292 8 3517 2017 10.1074/jbc.M116.762666 Genetic and biochemical characterization of a Gene Operon for trans-aconitic acid, a novel nematicide from Bacillus thuringiensis 

  28. J. Biol. Chem. Saffran 180 3 1301 1949 10.1016/S0021-9258(19)51244-3 Inhibition of aconitase by trans-aconitate 

  29. Eur. J. Plant Pathol. Huang 126 3 417 2010 10.1007/s10658-009-9550-z Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita 

  30. Soil Biol. Biochem. Gu 39 10 2567 2007 10.1016/j.soilbio.2007.05.011 Evaluation and identification of potential organic nematicidal volatiles from soil bacteria 

  31. Sci. Rep. Cheng 7 1 2017 10.1038/s41598-017-16631-8 Volatile organic compounds from Paenibacillus polymyxa KM2501-1 control Meloidogyne incognita by multiple strategies 

  32. FEMS Yeast Res. Troppens 13 3 322 2013 10.1111/1567-1364.12037 Genome-wide investigation of cellular targets and mode of action of the antifungal bacterial metabolite 2,4-diacetylphloroglucinol in Saccharomyces cerevisiae 

  33. J. Nematol. Meyer 41 4 274 2009 Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes 

  34. Curr. Microbiol. Lee 62 3 746 2011 10.1007/s00284-010-9779-y Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6 

  35. J. Bacteriol. Gallagher 183 21 6207 2001 10.1128/JB.183.21.6207-6214.2001 Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning 

  36. Soil Biol. Biochem. Siddiqui 35 12 1625 2003 10.1016/j.soilbio.2003.08.007 Suppression of Meloidogyne javanica by Pseudomonas aeruginosa IE-6S+ in tomato: the influence of NaCl, oxygen and iron levels 

  37. Nat. Prod. Rep. Genilloud 34 10 1203 2017 10.1039/C7NP00026J Actinomycetes: still a source of novel antibiotics 

  38. J. Ind. Microbiol. Biot. Genilloud 38 3 375 2011 10.1007/s10295-010-0882-7 Current approaches to exploit actinomycetes as a source of novel natural products 

  39. Pest Manag. Sci. Qiao 68 6 853 2012 10.1002/ps.2338 Effect of abamectin on root-knot nematodes and tomato yield 

  40. Sci. Rep. Rajasekharan 7 1 2017 10.1038/s41598-017-07074-2 Assessments of iodoindoles and abamectin as inducers of methuosis in pinewood nematode, Bursaphelenchus xylophilus 

  41. J. Nematol. Bi 47 2 126 2015 Efficacy of four nematicides against the reproduction and development of pinewood nematode, Bursaphelenchus xylophilus 

  42. J. Parasitol. Arena 81 2 286 1995 10.2307/3283936 The mechanism of action of avermectins in Caenorhabditis elegans: correlation between activation of glutamate-sensitive chloride current, membrane binding, and biological activity 

  43. Parasitology Wolstenholme 131 Suppl S85 2005 Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics 

  44. Appl. Environ. Microbiol. Liu 81 15 5157 2015 10.1128/AEM.00868-15 Increasing avermectin production in Streptomyces avermitilis by manipulating the expression of a novel TetR-Family regulator and its target gene product 

  45. Plants (Basel) Talavera-Rubia 9 7 2020 Nematicidal efficacy of milbemectin against root-knot nematodes 

  46. J Antibiot (Tokyo) Xiang 60 10 608 2007 10.1038/ja.2007.78 Further new milbemycin antibiotics from Streptomyces bingchenggensis. Fermentation, isolation, structural elucidation and biological activities 

  47. Pest Manag. Sci. Takai 56 10 937 2000 10.1002/1526-4998(200010)56:10<937::AID-PS213>3.0.CO;2-B Emamectin benzoate as a candidate for a trunk-injection agent against the pine wood nematode Bursaphelenchus xylophilus 

  48. Pest Manag. Sci. Liu 75 6 1585 2019 10.1002/ps.5272 Screening, isolation and evaluation of a nematicidal compound from actinomycetes against the pine wood nematode, Bursaphelenchus xylophilus 

  49. Hell. Plant Prot. J. S.A.S.A 12 1 24 2019 Investigating the in vitro and in vivo nematicidal performance of structurally related macrolides against the root-knot nematode, Meloidogyne incognita 

  50. Pestic Biochem Phys Orr 95 1 1 2009 10.1016/j.pestbp.2009.04.009 Novel mode of action of spinosad: receptor binding studies demonstrating lack of interaction with known insecticidal target sites 

  51. J. Agric. Food Chem. Wang 63 29 6577 2015 10.1021/acs.jafc.5b02595 Yellow pigment aurovertins mediate interactions between the pathogenic fungus pochonia chlamydosporia and its nematode host 

  52. Plant Pathology J. Kwon 23 4 318 2007 10.5423/PPJ.2007.23.4.318 Nematicidal activity of bikaverin and fusaric acid isolated from Fusarium oxysporum against pine wood nematode, Bursaphelenchus xylophilus 

  53. Mol. Plant Pathol. Lopez-Diaz 19 2 440 2018 10.1111/mpp.12536 Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts 

  54. PLoS One Ruiz 10 1 2015 10.1371/journal.pone.0117040 Production of siderophores increases resistance to fusaric acid in Pseudomonas protegens Pf-5 

  55. Phytochemistry Schwarz 65 15 2239 2004 10.1016/j.phytochem.2004.06.035 3-hydroxypropionic acid as a nematicidal principle in endophytic fungi 

  56. Sci. Rep. Li 6 2016 High production of 3-Hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism 

  57. Bull. Nat. Res. Centre Youssef 44 1 2020 10.1186/s42269-020-00367-z Evaluation of the fungal activity of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus as biocontrol agents against root-knot nematode, Meloidogyne incognita on cowpea 

  58. Front. Pharmacol. Wu 9 2018 10.3389/fphar.2018.01338 A review on the synthesis and bioactivity aspects of Beauvericin, a fusarium mycotoxin 

  59. Food Chem. Toxicol. Mallebrera 111 537 2018 10.1016/j.fct.2017.11.019 In vitro mechanisms of Beauvericin toxicity: a review 

  60. Fundam. Appl. Nematol. Ciancio 18 451 1995 Observations on the nematicidal properties of some mycotoxins 

  61. Front. Public Health Prosperini 5 2017 10.3389/fpubh.2017.00304 A review of the mycotoxin enniatin B 

  62. Microbiol. Res. (Pavia) Li 186-187 139 2016 10.1016/j.micres.2016.03.008 The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro 

  63. Jun Wu Xi Tong Dong 20 4 515 2001 Nematicidal activity of perylenequinones photosensitive compounds 

  64. Mycol. Res. Madrigal 98 874 1994 10.1016/S0953-7562(09)80257-8 Mechanisms of action of the antibiotic flavipin on Monilinia laxa and Saccharomyces cerevisiae 

  65. Nematology M.S.L.F 4 1 55 2002 10.1163/156854102760082203 Isolation of favipin, a fungus compound antagonistic to plant-parasitic nematodes 

  66. J. Am. Chem. Soc. Guo 134 50 20306 2012 10.1021/ja3104044 Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus 

  67. Phytochem. Rev. David 14 2 299 2015 10.1007/s11101-014-9367-z The pharmaceutical industry and natural products: historical status and new trends 

  68. Chem. Rev. Li 118 7 3752 2018 10.1021/acs.chemrev.7b00653 Divergent strategy in natural product total synthesis 

  69. Proc. Natl. Acad. Sci. U. S. A. Li 105 36 13197 2008 10.1073/pnas.0804348105 Green chemistry for chemical synthesis 

  70. Front. Microbiol. Zhao 11 2020 Genome sequencing and analysis of the hypocrellin-producing fungus shiraia bambusicola S4201 

  71. J. Microbiol. Li 57 2 154 2019 10.1007/s12275-019-8259-8 Gentic overexpression increases production of hypocrellin A in Shiraia bambusicola S4201 

  72. Mol. Biosyst. Choi 6 2 336 2010 10.1039/B923177C Cloning and heterologous expression of the spectinabilin biosynthetic gene cluster from Streptomyces spectabilis 

  73. Extremophiles de Oliveira 19 1 31 2015 10.1007/s00792-014-0707-0 Thermophilic fungi in the new age of fungal taxonomy 

  74. J. Am. Chem. Soc. Zhang 142 4 1957 2020 10.1021/jacs.9b11410 Heterologous and engineered biosynthesis of nematocidal polyketide-nonribosomal peptide hybrid macrolactone from extreme thermophilic Fungi 

  75. Nat. Commun. Zhao 11 1 2020 10.1038/s41467-020-19984-3 Pathway engineering in yeast for synthesizing the complex polyketide bikaverin 

  76. Biosci. Biotechnol. Biochem. Kikuchi 75 4 764 2011 10.1271/bbb.100742 Endocrocin and its derivatives from the Japanese mealybug Planococcus kraunhiae 

  77. Metab. Eng. Sun 54 212 2019 10.1016/j.ymben.2019.04.008 Metabolic engineering of Saccharomyces cerevisiae for efficient production of endocrocin and emodin 

  78. Appl. Microbiol. Biotechnol. Wang 104 7 2935 2020 10.1007/s00253-020-10410-8 Improved milbemycin production by engineering two Cytochromes P450 in Streptomyces bingchenggensis 

  79. Proc. Natl. Acad. Sci. U. S. A. Zhuo 107 25 11250 2010 10.1073/pnas.1006085107 Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis 

  80. Nat. Biotechnol. Wang 38 1 76 2020 10.1038/s41587-019-0335-4 Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces 

  81. J. Lipid Res. Forney 12 4 383 1971 10.1016/S0022-2275(20)39487-6 The biology of methyl ketones 

  82. Plant Physiol. Yu 154 1 67 2010 10.1104/pp.110.157073 Enzymatic functions of wild tomato methylketone synthases 1 and 2 

  83. J. Ind. Microbiol. Biotechnol. Park 39 11 1703 2012 10.1007/s10295-012-1178-x Synthesis of methyl ketones by metabolically engineered Escherichia coli 

  84. Metab. Eng. Yan 61 335 2020 10.1016/j.ymben.2020.05.008 Metabolic engineering of beta-oxidation to leverage thioesterases for production of 2-heptanone, 2-nonanone and 2-undecanone 

  85. ACS Synth. Biol. Hernandez Lozada 7 9 2205 2018 10.1021/acssynbio.8b00215 Highly active C8-Acyl-ACP thioesterase variant isolated by a synthetic selection strategy 

  86. Lett. Appl. Microbiol. Meng 63 5 384 2016 10.1111/lam.12635 Enhanced production of avermectin by deletion of type III polyketide synthases biosynthetic cluster rpp in Streptomyces avermitilis 

  87. Appl. Microbiol. Biotechnol. Zhang 97 23 10091 2013 10.1007/s00253-013-5255-5 Genetic engineering of Streptomyces bingchenggensis to produce milbemycins A3/A4 as main components and eliminate the biosynthesis of nanchangmycin 

  88. Appl. Microbiol. Biotechnol. Du 97 14 6383 2013 10.1007/s00253-013-4836-7 Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters 

  89. Microb. Cell Fact. Yin 14 2015 10.1186/s12934-015-0231-7 Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus 

  90. J Antibiot (Tokyo) Ono 36 5 509 1983 10.7164/antibiotics.36.509 Milbemycins, a new family of macrolide antibiotics. Fermentation, isolation, physico-chemical properties and bioconversion of milbemycins J and K 

  91. Microb. Cell Fact. Zhang 15 1 2016 10.1186/s12934-016-0552-1 Characterization of a pathway-specific activator of milbemycin biosynthesis and improved milbemycin production by its overexpression in Streptomyces bingchenggensis 

  92. Appl. Microbiol. Biotechnol. Chen 80 2 277 2008 10.1007/s00253-008-1545-8 Characterization of a negative regulator AveI for avermectin biosynthesis in Streptomyces avermitilis NRRL8165 

  93. PLoS One Guo 9 6 2014 10.1371/journal.pone.0099224 Two adjacent and similar TetR family transcriptional regulator genes, SAV577 and SAV576, co-regulate avermectin production in Streptomyces avermitilis 

  94. PLoS One Guo 8 8 2013 10.1371/journal.pone.0071330 A novel TetR family transcriptional regulator, SAV576, negatively controls avermectin biosynthesis in Streptomyces avermitilis 

  95. Mol. Genet. Genomics Guo 283 2 123 2010 10.1007/s00438-009-0502-2 The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis 

  96. Appl. Microbiol. Biotechnol. He 98 1 399 2014 10.1007/s00253-013-5348-1 Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis 

  97. Biotechnol. Lett. Jiang 33 10 1955 2011 10.1007/s10529-011-0673-x Inactivation of the extracytoplasmic function sigma factor Sig6 stimulates avermectin production in Streptomyces avermitilis 

  98. J. Ind. Microbiol. Biotechnol. Li 37 7 673 2010 10.1007/s10295-010-0710-0 Overexpression of ribosome recycling factor causes increased production of avermectin in Streptomyces avermitilis strains 

  99. Appl. Microbiol. Biotechnol. Luo 98 16 7097 2014 10.1007/s00253-014-5759-7 An extracytoplasmic function sigma factor, sigma(25), differentially regulates avermectin and oligomycin biosynthesis in Streptomyces avermitilis 

  100. Biotechnol. Lett. Wang 36 4 813 2014 10.1007/s10529-013-1416-y Characterization of AvaR1, an autoregulator receptor that negatively controls avermectins production in a high avermectin-producing strain 

  101. FEMS Microbiol. Lett. Chen 298 2 199 2009 10.1111/j.1574-6968.2009.01721.x Transcriptomics analyses reveal global roles of the regulator AveI in Streptomyces avermitilis 

  102. Biotechnol. J. Zhu 15 9 2020 10.1002/biot.201900494 Transporter engineering for microbial manufacturing 

  103. Bioresour. Technol. Li 101 23 9228 2010 10.1016/j.biortech.2010.06.132 Enhancement of avermectin and ivermectin production by overexpression of the maltose ATP-binding cassette transporter in Streptomyces avermitilis 

  104. Antimicrob. Agents Chemother. Ikeda 32 2 282 1988 10.1128/AAC.32.2.282 Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis 

  105. Res. Microbiol. Mendez 152 3-4 341 2001 10.1016/S0923-2508(01)01205-0 The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms 

  106. J. Antibiot. (Tokyo) Ikeno 53 4 373 2000 10.7164/antibiotics.53.373 ABC transporter genes, kasKLM, responsible for self-resistance of a kasugamycin producer strain 

  107. Curr. Opin. Microbiol. Martin 8 3 282 2005 10.1016/j.mib.2005.04.009 Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication 

  108. Appl. Microbiol. Biotechnol. Qiu 92 2 337 2011 10.1007/s00253-011-3439-4 Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis 

  109. Appl. Microbiol. Biotechnol. Huang 103 17 7029 2019 10.1007/s00253-019-10004-z Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid 

  110. Metab. Eng. Pogorevc 55 201 2019 10.1016/j.ymben.2019.07.010 Production optimization and biosynthesis revision of corallopyronin A, a potent anti-filarial antibiotic 

  111. Biotechnol. Bioeng. Zhou 110 12 3177 2013 10.1002/bit.24980 Production of 3-hydroxypropionic acid from glycerol by recombinant Pseudomonas denitrificans 

  112. Biotechnol. Bioeng. Chu 112 2 356 2015 10.1002/bit.25444 Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli 

  113. Bioresour. Technol. Lee 299 2020 10.1016/j.biortech.2019.122600 Improved production of 3-hydroxypropionic acid in engineered Escherichia coli by rebalancing heterologous and endogenous synthetic pathways 

  114. Microb. Cell Fact. Dishisha 14 2015 10.1186/s12934-015-0388-0 Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis 

  115. Appl. Microbiol. Biotechnol. Mohan Raj 84 4 649 2009 10.1007/s00253-009-1986-8 Effect of process parameters on 3-hydroxypropionic acid production from glycerol using a recombinant Escherichia coli 

  116. Bioresour. Technol. Kwak 135 432 2013 10.1016/j.biortech.2012.11.063 Biosynthesis of 3-hydroxypropionic acid from glycerol in recombinant Escherichia coli expressing Lactobacillus brevis dhaB and dhaR gene clusters and E. Coli K-12 aldH 

  117. FEMS Microbiol. Lett. Tang 325 1 22 2011 10.1111/j.1574-6968.2011.02405.x Duplication of partial spinosyn biosynthetic gene cluster in Saccharopolyspora spinosa enhances spinosyn production 

  118. J. Ind. Microbiol. Biotechnol. Madduri 27 6 399 2001 10.1038/sj.jim.7000180 Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa 

  119. Biochem. Eng. J. Xue 72 90 2013 10.1016/j.bej.2013.01.007 Stepwise increase of spinosad production in Saccharopolyspora spinosa by metabolic engineering 

  120. Biotechnol. Lett. Pan 33 4 733 2011 10.1007/s10529-010-0481-8 Improvement of spinosad production by overexpression of gtt and gdh controlled by promoter PermE* in Saccharopolyspora spinosa SIPI-A2090 

  121. J. Biomolecule Reconstruction Jha 10 27 2013 Enhancement of Spinosyns production in Saccharopolyspora spinosa NRRL 18395 (ATCC 83543.1) by metabolic engineering 

  122. Biotechnol. Lett. Maharjan 30 9 1621 2008 10.1007/s10529-008-9735-0 Heterologous expression of metK1-sp and afsR-sp in Streptomyces venezuelae for the production of pikromycin 

  123. Appl. Microbiol. Biotechnol. Wang 77 2 367 2007 10.1007/s00253-007-1172-9 Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene 

  124. J. Ind. Microbiol. Biotechnol. Horinouchi 30 8 462 2003 10.1007/s10295-003-0063-z AfsR as an integrator of signals that are sensed by multiple serine/threonine kinases in Streptomyces coelicolor A3(2) 

  125. Biotechnol. Lett. Maharjan 32 2 277 2010 10.1007/s10529-009-0152-9 Metabolic engineering of Streptomyces venezuelae for malonyl-CoA biosynthesis to enhance heterologous production of polyketides 

  126. Appl. Environ. Microbiol. Ryu 72 11 7132 2006 10.1128/AEM.01308-06 Engineering of primary carbohydrate metabolism for increased production of actinorhodin in Streptomyces coelicolor 

  127. J. Ind. Microbiol. Biotechnol. Simeonidis 42 3 327 2015 10.1007/s10295-014-1576-3 Genome-scale modeling for metabolic engineering 

  128. Metab. Eng. Alper 7 3 155 2005 10.1016/j.ymben.2004.12.003 Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli 

  129. Metab. Eng. Bro 8 2 102 2006 10.1016/j.ymben.2005.09.007 In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production 

  130. Genome Inform. Lee 13 214 2002 In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example 

  131. Gene Sabzehzari 759 2020 10.1016/j.gene.2020.144993 CRISPR-based metabolic editing: next-generation metabolic engineering in plants 

  132. Int. J. Mol. Sci. Cho 19 4 2018 10.3390/ijms19041089 Applications of CRISPR/Cas system to bacterial metabolic engineering 

  133. Trends Biotechnol. Behler 36 10 996 2018 10.1016/j.tibtech.2018.05.011 CRISPR-based technologies for metabolic engineering in Cyanobacteria 

  134. Metab. Eng. Li 38 293 2016 10.1016/j.ymben.2016.09.006 CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production 

  135. ACS Synth. Biol. Heo 6 2 182 2017 10.1021/acssynbio.6b00134 Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n-Butanol production in Escherichia coli 

  136. Metab. Eng. Wu 43 Pt A 85 2017 10.1016/j.ymben.2017.07.001 Membrane engineering - A novel strategy to enhance the production and accumulation of beta-carotene in Escherichia coli 

  137. Synth. Syst. Biotechnol. Meng 2 2 130 2017 10.1016/j.synbio.2017.06.001 Improvement of pristinamycin I (PI) production in Streptomyces pristinaespiralis by metabolic engineering approaches 

  138. Appl. Environ. Microbiol. Huang 82 18 5603 2016 10.1128/AEM.00618-16 High level of spinosad production in the heterologous host Saccharopolyspora erythraea 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로