최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Landslides : Journal of the International Consortium on Landslides, v.18 no.1, 2021년, pp.217 - 234
Choi, Shin-Kyu , Park, Joon-Young , Lee, Deuk-Hwan , Lee, Seung-Rae , Kim, Yun-Tae , Kwon, Tae-Hyuk
AbstractDebris flows are one of the perilous landslide-related hazards due to their fast flow velocity, large impact force, and long runout, in association with poor predictability. Debris-flow barriers that can minimize the energy of debris flows have been widely constructed to mitigate potential d...
Landslides J Aaron 16 907 2019 10.1007/s10346-018-1116-8 Aaron J, McDougall S, Nolde N (2019) Two methodologies to calibrate landslide runout models. Landslides 16:907-920. https://doi.org/10.1007/s10346-018-1116-8
Nat Hazards Earth Syst Sci S Beguería 9 1897 2009 10.5194/nhess-9-1897-2009 Beguería S, Van Asch TW, Malet JP, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9:1897-1909. https://doi.org/10.5194/nhess-9-1897-2009
Landslides J Cepeda 7 105 2010 10.1007/s10346-010-0197-9 Cepeda J, Chávez JA, Martínez CC (2010) Procedure for the selection of runout model parameters from landslide back-analyses: application to the Metropolitan Area of San Salvador, El Salvador. Landslides 7:105-116. https://doi.org/10.1007/s10346-010-0197-9
Eng Geol HX Chen 251 48 2019 10.1016/j.enggeo.2019.02.001 Chen HX, Li J, Feng SJ, Gao HY, Zhang DM (2019) Simulation of interactions between debris flow and check dams on three-dimensional terrain. Eng Geol 251:48-62. https://doi.org/10.1016/j.enggeo.2019.02.001
Landslides SK Choi 15 111 2018 10.1007/s10346-017-0853-4 Choi SK, Lee JM, Kwon TH (2018) Effect of slit-type barrier on characteristics of water-dominant debris flows: small-scale physical modeling. Landslides 15:111-122. https://doi.org/10.1007/s10346-017-0853-4
Cold Reg Sci Technol M Christen 63 1 2010 10.1016/j.coldregions.2010.04.005 Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1-14. https://doi.org/10.1016/j.coldregions.2010.04.005
Landslides S Cuomo 16 1077 2019 10.1007/s10346-019-01155-1 Cuomo S, Moretti S, Aversa S (2019) Effects of artificial barriers on the propagation of debris avalanches. Landslides 16:1077-1087. https://doi.org/10.1007/s10346-019-01155-1
Geomorphology GB Crosta 60 127 2004 10.1016/j.geomorph.2003.07.015 Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola landslide, Italian alps. Geomorphology 60:127-146. https://doi.org/10.1016/j.geomorph.2003.07.015
Landslides Z Dai 14 917 2017 10.1007/s10346-016-0777-4 Dai Z, Huang Y, Cheng H, Xu Q (2017) SPH model for fluid-structure interaction and its application to debris flow impact estimation. Landslides 14:917-928. https://doi.org/10.1007/s10346-016-0777-4
Phys Chem Earth Part C S Egashira 26 645 2001 10.1016/S1464-1917(01)00062-9 Egashira S, Honda N, Itoh T (2001) Experimental study on the entrainment of bed material into debris flow. Phys Chem Earth Part C 26:645-650. https://doi.org/10.1016/S1464-1917(01)00062-9
Phys Chem Earth Part C L Franzi 26 683 2001 10.1016/S1464-1917(01)00067-8 Franzi L, Bianco G (2001) A statistical method to predict debris flow deposited volumes on a debris fan. Phys Chem Earth Part C 26:683-688. https://doi.org/10.1016/S1464-1917(01)00067-8
Nat Hazards Earth Syst Sci RH Guthrie 12 1277 2012 10.5194/nhess-12-1277-2012 Guthrie RH, Friele P, Allstadt K, Roberts N, Evans SG, Delaney KB, Jakob M (2012) The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Nat Hazards Earth Syst Sci 12:1277-1294. https://doi.org/10.5194/nhess-12-1277-2012
Can Geotech J O Hungr 32 610 1995 10.1139/t95-063 Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610-623. https://doi.org/10.1139/t95-063
Geol Soc Am Bull O Hungr 116 1240 2004 10.1130/B25362.1 Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116:1240-1252. https://doi.org/10.1130/B25362.1
Can Geotech M Hürlimann 40 161 2003 10.1139/t02-087 Hürlimann M, Rickenmann D, Graf C (2003) Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech 40:161-175. https://doi.org/10.1139/t02-087
Nat Geosci RM Iverson 4 116 2011 10.1038/ngeo1040 Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116-121. https://doi.org/10.1038/ngeo1040
10.1029/2011JF002189 Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res Earth Surf 117. https://doi.org/10.1029/2011JF002189
J Geophys Res Earth Surf RM Iverson 121 2333 2016 10.1002/2016JF003933 Iverson RM, George DL, Logan M (2016) Debris flow runup on vertical barriers and adverse slopes. J Geophys Res Earth Surf 121:2333-2357. https://doi.org/10.1002/2016JF003933
Rock Mech HJ Körner 8 225 1976 10.1007/BF01259363 Körner HJ (1976) Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen. Rock Mech 8:225-256. https://doi.org/10.1007/BF01259363
Can Geotech J JSH Kwan 52 1345 2015 10.1139/cgj-2014-0152 Kwan JSH, Koo RCH, Ng CWW (2015) Landslide mobility analysis for design of multiple debris-resisting barriers. Can Geotech J 52:1345-1359. https://doi.org/10.1139/cgj-2014-0152
Landslides J Liu 10 161 2013 10.1007/s10346-012-0316-x Liu J, Nakatani K, Mizuyama T (2013) Effect assessment of debris flow mitigation works based on numerical simulation by using Kanako 2D. Landslides 10:161-173. https://doi.org/10.1007/s10346-012-0316-x
Loup B, Egli T, Stucki M, Bartelt P, McArdell BW, Baumann R (2012) Impact pressures of hillslope debris flows. In Proc 12th Congr INTERPRAEVENT (225-236). International Research Society INTERPRAEVENT, Klagenfurt
Eng Geol BQ Luna 128 63 2012 10.1016/j.enggeo.2011.04.007 Luna BQ, Remaître A, Van Asch TW, Malet JP, Van Westen CJ (2012) Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol 128:63-75. https://doi.org/10.1016/j.enggeo.2011.04.007
10.1029/2009JF001462 Mangeney A, Roche O, Hungr O, Mangold N, Faccanoni G, Lucas A (2010) Erosion and mobility in granular collapse over sloping beds. J Geophys Res Earth Surf 115. https://doi.org/10.1029/2009JF001462
Mar Geophys Res P Mazzanti 32 273 2011 10.1007/s11001-011-9117-1 Mazzanti P, Bozzano F (2011) Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar Geophys Res 32:273-286. https://doi.org/10.1007/s11001-011-9117-1
Can Geotech J S McDougall 54 605 2016 10.1139/cgj-2016-0104 McDougall S (2016) 2014 Canadian Geotechnical Colloquium: landslide runout analysis-current practice and challenges. Can Geotech J 54:605-620. https://doi.org/10.1139/cgj-2016-0104
Can Geotech J S McDougall 41 1084 2004 10.1139/t04-052 McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084-1097. https://doi.org/10.1139/t04-052
Can Geotech J S McDougall 42 1437 2005 10.1139/t05-064 McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437-1448. https://doi.org/10.1139/t05-064
McKinnon M, Hungr O, McDougall S (2008) Dynamic analyses of Canadian landslides. In Proc 4th Can Conf GeoHazards: from causes to management (20-24). Presse de l'Université de Laval, Que’bec
Proc Earth Planet Sci CWW Ng 9 3 2014 10.1016/j.proeps.2014.06.012 Ng CWW, Choi CE, Kwan JSH, Koo RCH, Shiu HYK, Ho KKS (2014) Effects of baffle transverse blockage on landslide debris impedance. Proc Earth Planet Sci 9:3-13. https://doi.org/10.1016/j.proeps.2014.06.012
Landslides CWW Ng 12 1 2015 10.1007/s10346-014-0476-y Ng CWW, Choi CE, Song D, Kwan JHS, Koo RCH, Shiu HYK, Ho KKS (2015) Physical modeling of baffles influence on landslide debris mobility. Landslides 12:1-18. https://doi.org/10.1007/s10346-014-0476-y
J Hydraul Eng JS O'Brien 119 244 1993 10.1061/(ASCE)0733-9429(1993)119:2(244) O'Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)
Soils Found RP Orense 46 685 2006 10.3208/sandf.46.685 Orense RP, Sapuay SE (2006) Preliminary report on the 17 February 2006 Leyte, Philippines landslide. Soils Found 46:685-693. https://doi.org/10.3208/sandf.46.685
Int J Numer Anal Met M Pastor 33 143 2009 10.1002/nag.705 Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Met 33:143-172. https://doi.org/10.1002/nag.705
Rock Mech Rock Eng M Pirulli 41 59 2008 10.1007/s00603-007-0143-x Pirulli M, Mangeney A (2008) Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech Rock Eng 41:59-84. https://doi.org/10.1007/s00603-007-0143-x
Quan L (2012) Dynamic numerical run-out modeling for quantitative landslide risk assessment. Ph.D. thesis, UT, Enschede
Nat Hazards Earth Syst Sci A Remaître 8 1403 2008 10.5194/nhess-8-1403-2008 Remaître A, Van Asch TW, Malet JP, Maquaire O (2008) Influence of check dams on debris-flow run-out intensity. Nat Hazards Earth Syst Sci 8:1403-1416. https://doi.org/10.5194/nhess-8-1403-2008
Environ Geol P Revellino 45 295 2004 10.1007/s00254-003-0885-z Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ Geol 45:295-311. https://doi.org/10.1007/s00254-003-0885-z
Water Resour Res D Rickenmann 37 3295 2001 10.1029/2001WR000319 Rickenmann D (2001) Comparison of bed load transport in torrents and gravel bed streams. Water Resour Res 37:3295-3305. https://doi.org/10.1029/2001WR000319
Nat Hazards Earth Syst Sci K Schraml 15 1483 2015 10.5194/nhess-15-1483-2015 Schraml K, Thomschitz B, McArdell BW, Graf C, Kaitna R (2015) Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat Hazards Earth Syst Sci 15:1483-1492. https://doi.org/10.5194/nhess-15-1483-2015
10.1007/s10346-019-01230-7 Shen W, Wang D, Qu H, Li T (2019) The effect of check dams on the dynamic and bed entrainment processes of debris flows. Landslides 1-17. https://doi.org/10.1007/s10346-019-01230-7
Landslides X Siyou 17 1 2020 10.1007/s10346-020-01368-9 Siyou X, Lijun S, Yuanjun J, Xin Q, Min X, Xiaobo H, Zhenyu L (2020) Experimental investigation on the impact force of the dry granular flow against a flexible barrier. Landslides 17:1-19. https://doi.org/10.1007/s10346-020-01368-9
Landslides D Song 16 2321 2019 10.1007/s10346-019-01243-2 Song D, Choi CE, Ng CWW, Zhou GG, Kwan JS, Sze HY, Zheng Y (2019) Load-attenuation mechanisms of flexible barrier subjected to bouldery debris flow impact. Landslides 16:2321-2334. https://doi.org/10.1007/s10346-019-01243-2
Int J Eros Control Eng T Takahara 1 73 2008 10.13101/ijece.1.73 Takahara T, Matsumura K (2008) Experimental study of the sediment trap effect of steel grid-type sabo dams. Int J Eros Control Eng 1:73-78. https://doi.org/10.13101/ijece.1.73
Annu Rev Fluid Mech T Takahashi 13 57 1981 10.1146/annurev.fl.13.010181.000421 Takahashi T (1981) Debris flow. Annu Rev Fluid Mech 13:57-77
10.1007/978-3-642-31310-3_44 Tamburini A, Villa F, Fischer L, Hungr O, Chiarle M, Mortara G (2013) Slope instabilities in high-mountain rock walls. Recent events on the Monte Rosa east face (Macugnaga, NW Italy). In Landslide science and practice (327-332). Springer, Berlin. https://doi.org/10.1007/978-3-642-31310-3_44
10.1007/s10346-020-01378-7 Tan DY, Yin JH, Qin JQ, Zhu ZH, Feng WQ (2020) Experimental study on impact and deposition behaviours of multiple surges of channelized debris flow on a flexible barrier. Landslides 1-13. https://doi.org/10.1007/s10346-020-01378-7
Quat Int C Tang 250 63 2012 10.1016/j.quaint.2010.11.020 Tang C, Zhu J, Chang M, Ding J, Qi X (2012) An empirical-statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area. Quat Int 250:63-73. https://doi.org/10.1016/j.quaint.2010.11.020
Landslides NN Vasu 15 1523 2018 10.1007/s10346-018-0971-7 Vasu NN, Lee SR, Lee DH, Park J, Chae BG (2018) A method to develop the input parameter database for site-specific debris flow hazard prediction under extreme rainfall. Landslides 15:1523-1539. https://doi.org/10.1007/s10346-018-0971-7
Schweiz Bauzeitung A Voellmy 73 212 1955 Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweiz Bauzeitung 73:212-285
J Mt Sci CY Yune 10 199 2013 10.1007/s11629-013-2518-7 Yune CY, Chae YK, Paik J, Kim G, Lee SW, Seo HS (2013) Debris flow in metropolitan area-2011 Seoul debris flow. J Mt Sci 10:199-206. https://doi.org/10.1007/s11629-013-2518-7
Landslides GGD Zhou 15 695 2018 10.1007/s10346-017-0908-6 Zhou GGD, Song D, Choi CE, Pasuto A, Sun QC, Dai DF (2018) Surge impact behavior of granular flows: effects of water content. Landslides 15:695-709. https://doi.org/10.1007/s10346-017-0908-6
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.