$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Assessment of barrier location effect on debris flow based on smoothed particle hydrodynamics (SPH) simulation on 3D terrains 원문보기

Landslides : Journal of the International Consortium on Landslides, v.18 no.1, 2021년, pp.217 - 234  

Choi, Shin-Kyu ,  Park, Joon-Young ,  Lee, Deuk-Hwan ,  Lee, Seung-Rae ,  Kim, Yun-Tae ,  Kwon, Tae-Hyuk

Abstract AI-Helper 아이콘AI-Helper

AbstractDebris flows are one of the perilous landslide-related hazards due to their fast flow velocity, large impact force, and long runout, in association with poor predictability. Debris-flow barriers that can minimize the energy of debris flows have been widely constructed to mitigate potential d...

참고문헌 (59)

  1. 10.1201/9781315375007-15 Aaron J, Hungr O, McDougall S (2016) Development of a systematic approach to calibrate equivalent fluid runout models. Proc 12th Int Symp Landslides, Naples. Edited by S. Aversa, L. Cascini, L. Picarelli, and C. Scavia. Taylor and Francis 285-294 

  2. Landslides J Aaron 16 907 2019 10.1007/s10346-018-1116-8 Aaron J, McDougall S, Nolde N (2019) Two methodologies to calibrate landslide runout models. Landslides 16:907-920. https://doi.org/10.1007/s10346-018-1116-8 

  3. Nat Hazards Earth Syst Sci S Beguería 9 1897 2009 10.5194/nhess-9-1897-2009 Beguería S, Van Asch TW, Malet JP, Gröndahl S (2009) A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Nat Hazards Earth Syst Sci 9:1897-1909. https://doi.org/10.5194/nhess-9-1897-2009 

  4. Landslides J Cepeda 7 105 2010 10.1007/s10346-010-0197-9 Cepeda J, Chávez JA, Martínez CC (2010) Procedure for the selection of runout model parameters from landslide back-analyses: application to the Metropolitan Area of San Salvador, El Salvador. Landslides 7:105-116. https://doi.org/10.1007/s10346-010-0197-9 

  5. Eng Geol HX Chen 251 48 2019 10.1016/j.enggeo.2019.02.001 Chen HX, Li J, Feng SJ, Gao HY, Zhang DM (2019) Simulation of interactions between debris flow and check dams on three-dimensional terrain. Eng Geol 251:48-62. https://doi.org/10.1016/j.enggeo.2019.02.001 

  6. Landslides SK Choi 15 111 2018 10.1007/s10346-017-0853-4 Choi SK, Lee JM, Kwon TH (2018) Effect of slit-type barrier on characteristics of water-dominant debris flows: small-scale physical modeling. Landslides 15:111-122. https://doi.org/10.1007/s10346-017-0853-4 

  7. 10.25676/11124/173124 Choi SK, Kwon TH, Lee SR, Park JY (2019) Roles of barrier location for effective debris flow mitigation: assessment using DAN3D. In Assoc Environ Eng Geol; special publication 28. Colorado School of Mines. Arthur Lakes Library https://doi.org/10.25676/11124/173124 

  8. Cold Reg Sci Technol M Christen 63 1 2010 10.1016/j.coldregions.2010.04.005 Christen M, Kowalski J, Bartelt P (2010) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1-14. https://doi.org/10.1016/j.coldregions.2010.04.005 

  9. Landslides S Cuomo 16 1077 2019 10.1007/s10346-019-01155-1 Cuomo S, Moretti S, Aversa S (2019) Effects of artificial barriers on the propagation of debris avalanches. Landslides 16:1077-1087. https://doi.org/10.1007/s10346-019-01155-1 

  10. Geomorphology GB Crosta 60 127 2004 10.1016/j.geomorph.2003.07.015 Crosta GB, Chen H, Lee CF (2004) Replay of the 1987 Val Pola landslide, Italian alps. Geomorphology 60:127-146. https://doi.org/10.1016/j.geomorph.2003.07.015 

  11. Landslides Z Dai 14 917 2017 10.1007/s10346-016-0777-4 Dai Z, Huang Y, Cheng H, Xu Q (2017) SPH model for fluid-structure interaction and its application to debris flow impact estimation. Landslides 14:917-928. https://doi.org/10.1007/s10346-016-0777-4 

  12. Phys Chem Earth Part C S Egashira 26 645 2001 10.1016/S1464-1917(01)00062-9 Egashira S, Honda N, Itoh T (2001) Experimental study on the entrainment of bed material into debris flow. Phys Chem Earth Part C 26:645-650. https://doi.org/10.1016/S1464-1917(01)00062-9 

  13. Phys Chem Earth Part C L Franzi 26 683 2001 10.1016/S1464-1917(01)00067-8 Franzi L, Bianco G (2001) A statistical method to predict debris flow deposited volumes on a debris fan. Phys Chem Earth Part C 26:683-688. https://doi.org/10.1016/S1464-1917(01)00067-8 

  14. Nat Hazards Earth Syst Sci RH Guthrie 12 1277 2012 10.5194/nhess-12-1277-2012 Guthrie RH, Friele P, Allstadt K, Roberts N, Evans SG, Delaney KB, Jakob M (2012) The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Nat Hazards Earth Syst Sci 12:1277-1294. https://doi.org/10.5194/nhess-12-1277-2012 

  15. Can Geotech J O Hungr 32 610 1995 10.1139/t95-063 Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610-623. https://doi.org/10.1139/t95-063 

  16. Geol Soc Am Bull O Hungr 116 1240 2004 10.1130/B25362.1 Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism. Geol Soc Am Bull 116:1240-1252. https://doi.org/10.1130/B25362.1 

  17. Can Geotech M Hürlimann 40 161 2003 10.1139/t02-087 Hürlimann M, Rickenmann D, Graf C (2003) Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech 40:161-175. https://doi.org/10.1139/t02-087 

  18. Nat Geosci RM Iverson 4 116 2011 10.1038/ngeo1040 Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2011) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116-121. https://doi.org/10.1038/ngeo1040 

  19. 10.1029/2011JF002189 Iverson RM (2012) Elementary theory of bed-sediment entrainment by debris flows and avalanches. J Geophys Res Earth Surf 117. https://doi.org/10.1029/2011JF002189 

  20. J Geophys Res Earth Surf RM Iverson 121 2333 2016 10.1002/2016JF003933 Iverson RM, George DL, Logan M (2016) Debris flow runup on vertical barriers and adverse slopes. J Geophys Res Earth Surf 121:2333-2357. https://doi.org/10.1002/2016JF003933 

  21. Int J Eros Control Eng H Ikeya 114 37 1980 10.11475/sabo1973.32.37 Ikeya H, Uehara S (1980) Experimental study about the sediment control of slit Sabo dams. Int J Eros Control Eng 114:37-44. https://doi.org/10.11475/sabo1973.32.37 

  22. 10.1007/b138657 Jakob M, Hungr O (2005) Debris-flow hazards and related phenomena. Springer, Berlin https://doi.org/10.1007/b138657 

  23. J Korean Geotech Soc SS Jeong 31 45 2015 10.7843/kgs.2015.31.12.45 Jeong SS, Lee KW, Ko JY (2015) A study on the 3D analysis of debris flow based on large deformation technique (coupled Eulerian-Lagrangian). J Korean Geotech Soc 31:45-57. https://doi.org/10.7843/kgs.2015.31.12.45 

  24. Rock Mech HJ Körner 8 225 1976 10.1007/BF01259363 Körner HJ (1976) Reichweite und Geschwindigkeit von Bergstürzen und Fließschneelawinen. Rock Mech 8:225-256. https://doi.org/10.1007/BF01259363 

  25. Can Geotech J JSH Kwan 52 1345 2015 10.1139/cgj-2014-0152 Kwan JSH, Koo RCH, Ng CWW (2015) Landslide mobility analysis for design of multiple debris-resisting barriers. Can Geotech J 52:1345-1359. https://doi.org/10.1139/cgj-2014-0152 

  26. Landslides J Liu 10 161 2013 10.1007/s10346-012-0316-x Liu J, Nakatani K, Mizuyama T (2013) Effect assessment of debris flow mitigation works based on numerical simulation by using Kanako 2D. Landslides 10:161-173. https://doi.org/10.1007/s10346-012-0316-x 

  27. Loup B, Egli T, Stucki M, Bartelt P, McArdell BW, Baumann R (2012) Impact pressures of hillslope debris flows. In Proc 12th Congr INTERPRAEVENT (225-236). International Research Society INTERPRAEVENT, Klagenfurt 

  28. Eng Geol BQ Luna 128 63 2012 10.1016/j.enggeo.2011.04.007 Luna BQ, Remaître A, Van Asch TW, Malet JP, Van Westen CJ (2012) Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng Geol 128:63-75. https://doi.org/10.1016/j.enggeo.2011.04.007 

  29. 10.1029/2009JF001462 Mangeney A, Roche O, Hungr O, Mangold N, Faccanoni G, Lucas A (2010) Erosion and mobility in granular collapse over sloping beds. J Geophys Res Earth Surf 115. https://doi.org/10.1029/2009JF001462 

  30. Mar Geophys Res P Mazzanti 32 273 2011 10.1007/s11001-011-9117-1 Mazzanti P, Bozzano F (2011) Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar Geophys Res 32:273-286. https://doi.org/10.1007/s11001-011-9117-1 

  31. 10.14288/1.0052928 McDougall S (2006) A new continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. Ph.D. thesis, UBC, Vancouver, B.C. https://doi.org/10.14288/1.0052928 

  32. Can Geotech J S McDougall 54 605 2016 10.1139/cgj-2016-0104 McDougall S (2016) 2014 Canadian Geotechnical Colloquium: landslide runout analysis-current practice and challenges. Can Geotech J 54:605-620. https://doi.org/10.1139/cgj-2016-0104 

  33. Can Geotech J S McDougall 41 1084 2004 10.1139/t04-052 McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41:1084-1097. https://doi.org/10.1139/t04-052 

  34. Can Geotech J S McDougall 42 1437 2005 10.1139/t05-064 McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437-1448. https://doi.org/10.1139/t05-064 

  35. McKinnon M, Hungr O, McDougall S (2008) Dynamic analyses of Canadian landslides. In Proc 4th Can Conf GeoHazards: from causes to management (20-24). Presse de l'Université de Laval, Que’bec 

  36. Proc Earth Planet Sci CWW Ng 9 3 2014 10.1016/j.proeps.2014.06.012 Ng CWW, Choi CE, Kwan JSH, Koo RCH, Shiu HYK, Ho KKS (2014) Effects of baffle transverse blockage on landslide debris impedance. Proc Earth Planet Sci 9:3-13. https://doi.org/10.1016/j.proeps.2014.06.012 

  37. Landslides CWW Ng 12 1 2015 10.1007/s10346-014-0476-y Ng CWW, Choi CE, Song D, Kwan JHS, Koo RCH, Shiu HYK, Ho KKS (2015) Physical modeling of baffles influence on landslide debris mobility. Landslides 12:1-18. https://doi.org/10.1007/s10346-014-0476-y 

  38. J Hydraul Eng JS O'Brien 119 244 1993 10.1061/(ASCE)0733-9429(1993)119:2(244) O'Brien JS, Julien PY, Fullerton WT (1993) Two-dimensional water flood and mudflow simulation. J Hydraul Eng 119:244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244) 

  39. Soils Found RP Orense 46 685 2006 10.3208/sandf.46.685 Orense RP, Sapuay SE (2006) Preliminary report on the 17 February 2006 Leyte, Philippines landslide. Soils Found 46:685-693. https://doi.org/10.3208/sandf.46.685 

  40. Int J Numer Anal Met M Pastor 33 143 2009 10.1002/nag.705 Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Met 33:143-172. https://doi.org/10.1002/nag.705 

  41. Rock Mech Rock Eng M Pirulli 41 59 2008 10.1007/s00603-007-0143-x Pirulli M, Mangeney A (2008) Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech Rock Eng 41:59-84. https://doi.org/10.1007/s00603-007-0143-x 

  42. Quan L (2012) Dynamic numerical run-out modeling for quantitative landslide risk assessment. Ph.D. thesis, UT, Enschede 

  43. Nat Hazards Earth Syst Sci A Remaître 8 1403 2008 10.5194/nhess-8-1403-2008 Remaître A, Van Asch TW, Malet JP, Maquaire O (2008) Influence of check dams on debris-flow run-out intensity. Nat Hazards Earth Syst Sci 8:1403-1416. https://doi.org/10.5194/nhess-8-1403-2008 

  44. Environ Geol P Revellino 45 295 2004 10.1007/s00254-003-0885-z Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy. Environ Geol 45:295-311. https://doi.org/10.1007/s00254-003-0885-z 

  45. Water Resour Res D Rickenmann 37 3295 2001 10.1029/2001WR000319 Rickenmann D (2001) Comparison of bed load transport in torrents and gravel bed streams. Water Resour Res 37:3295-3305. https://doi.org/10.1029/2001WR000319 

  46. 10.1007/978-3-642-31310-3_30 Scheidl C, Rickenmann D, McArdell BW (2013) Runout prediction of debris flows and similar mass movements. In Landslide science and practice (221-229). Springer, Berlin. https://doi.org/10.1007/978-3-642-31310-3_30 

  47. Nat Hazards Earth Syst Sci K Schraml 15 1483 2015 10.5194/nhess-15-1483-2015 Schraml K, Thomschitz B, McArdell BW, Graf C, Kaitna R (2015) Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat Hazards Earth Syst Sci 15:1483-1492. https://doi.org/10.5194/nhess-15-1483-2015 

  48. 10.1007/s10346-019-01230-7 Shen W, Wang D, Qu H, Li T (2019) The effect of check dams on the dynamic and bed entrainment processes of debris flows. Landslides 1-17. https://doi.org/10.1007/s10346-019-01230-7 

  49. Landslides X Siyou 17 1 2020 10.1007/s10346-020-01368-9 Siyou X, Lijun S, Yuanjun J, Xin Q, Min X, Xiaobo H, Zhenyu L (2020) Experimental investigation on the impact force of the dry granular flow against a flexible barrier. Landslides 17:1-19. https://doi.org/10.1007/s10346-020-01368-9 

  50. Landslides D Song 16 2321 2019 10.1007/s10346-019-01243-2 Song D, Choi CE, Ng CWW, Zhou GG, Kwan JS, Sze HY, Zheng Y (2019) Load-attenuation mechanisms of flexible barrier subjected to bouldery debris flow impact. Landslides 16:2321-2334. https://doi.org/10.1007/s10346-019-01243-2 

  51. Int J Eros Control Eng T Takahara 1 73 2008 10.13101/ijece.1.73 Takahara T, Matsumura K (2008) Experimental study of the sediment trap effect of steel grid-type sabo dams. Int J Eros Control Eng 1:73-78. https://doi.org/10.13101/ijece.1.73 

  52. Annu Rev Fluid Mech T Takahashi 13 57 1981 10.1146/annurev.fl.13.010181.000421 Takahashi T (1981) Debris flow. Annu Rev Fluid Mech 13:57-77 

  53. 10.1007/978-3-642-31310-3_44 Tamburini A, Villa F, Fischer L, Hungr O, Chiarle M, Mortara G (2013) Slope instabilities in high-mountain rock walls. Recent events on the Monte Rosa east face (Macugnaga, NW Italy). In Landslide science and practice (327-332). Springer, Berlin. https://doi.org/10.1007/978-3-642-31310-3_44 

  54. 10.1007/s10346-020-01378-7 Tan DY, Yin JH, Qin JQ, Zhu ZH, Feng WQ (2020) Experimental study on impact and deposition behaviours of multiple surges of channelized debris flow on a flexible barrier. Landslides 1-13. https://doi.org/10.1007/s10346-020-01378-7 

  55. Quat Int C Tang 250 63 2012 10.1016/j.quaint.2010.11.020 Tang C, Zhu J, Chang M, Ding J, Qi X (2012) An empirical-statistical model for predicting debris-flow runout zones in the Wenchuan earthquake area. Quat Int 250:63-73. https://doi.org/10.1016/j.quaint.2010.11.020 

  56. Landslides NN Vasu 15 1523 2018 10.1007/s10346-018-0971-7 Vasu NN, Lee SR, Lee DH, Park J, Chae BG (2018) A method to develop the input parameter database for site-specific debris flow hazard prediction under extreme rainfall. Landslides 15:1523-1539. https://doi.org/10.1007/s10346-018-0971-7 

  57. Schweiz Bauzeitung A Voellmy 73 212 1955 Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweiz Bauzeitung 73:212-285 

  58. J Mt Sci CY Yune 10 199 2013 10.1007/s11629-013-2518-7 Yune CY, Chae YK, Paik J, Kim G, Lee SW, Seo HS (2013) Debris flow in metropolitan area-2011 Seoul debris flow. J Mt Sci 10:199-206. https://doi.org/10.1007/s11629-013-2518-7 

  59. Landslides GGD Zhou 15 695 2018 10.1007/s10346-017-0908-6 Zhou GGD, Song D, Choi CE, Pasuto A, Sun QC, Dai DF (2018) Surge impact behavior of granular flows: effects of water content. Landslides 15:695-709. https://doi.org/10.1007/s10346-017-0908-6 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로