$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Current Status of Pseudomonas putida Engineering for Lignin Valorization 원문보기

Biotechnology and bioprocess engineering : Bbe, v.25 no.6, 2020년, pp.862 - 871  

Lee, Siseon ,  Sohn, Jung-Hoon ,  Bae, Jung-Hoon ,  Kim, Sun Chang ,  Sung, Bong Hyun

초록이 없습니다.

참고문헌 (93)

  1. Nat. Rev. Microbiol. P I Nikel 12 368 2014 10.1038/nrmicro3253 Nikel, P. I., E. Martínez-García, and V. de Lorenzo (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat. Rev. Microbiol. 12: 368-379. 

  2. Plant Physiol. R Vanholme 153 895 2010 10.1104/pp.110.155119 Vanholme, R., B. Demedts, K. Morreel, J. Ralph, and W. Boerjan (2010) Lignin biosynthesis and structure. Plant Physiol. 153: 895-905. 

  3. Biotechnol. Bioeng. T Ezeji 97 1460 2007 10.1002/bit.21373 Ezeji, T., N. Qureshi, and H. P. Blaschek (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97: 1460-1469. 

  4. Curr. Opin. Chem. Biol. T D H Bugg 29 10 2015 10.1016/j.cbpa.2015.06.009 Bugg, T. D. H. and R. Rahmanpour (2015) Enzymatic conversion of lignin into renewable chemicals. Curr. Opin. Chem. Biol. 29: 10-17. 

  5. Front. Bioeng. Biotechnol. S Lee 7 209 2019 10.3389/fbioe.2019.00209 Lee, S., M. Kang, J. H. Bae, J. H. Sohn, and B. H. Sung (2019) Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives. Front. Bioeng. Biotechnol. 7: 209. 

  6. Appl. Microbiol. Biotechnol. A Santos 98 2053 2014 10.1007/s00253-013-5041-4 Santos, A., S. Mendes, V. Brissos, and L. O. Martins (2014) New dye-decolorizing peroxidases from Bacillus subtilis and Pseudomonas putida MET94: towards biotechnological applications. Appl. Microbiol. Biotechnol. 98: 2053-2065. 

  7. Environ. Microbiol. J I Jiménez 4 824 2002 10.1046/j.1462-2920.2002.00370.x Jiménez, J. I., B. Miñambres, J. L. García, and E. Díaz (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol. 4: 824-841. 

  8. Sci. Rep. K Min 5 8245 2015 10.1038/srep08245 Min, K., G. Gong, H. M. Woo, Y. Kim, and Y. Um (2015) A dye-decolorizing peroxidase from Bacillus subtilis exhibiting substrate-dependent optimum temperature for dyes and β-ether lignin dimer. Sci. Rep. 5: 8245. 

  9. Green Chem. D Salvachúa 17 4951 2015 10.1039/C5GC01165E Salvachúa, D., E. M. Karp, C. T. Nimlos, D. R. Vardon, and G. T. Beckham (2015) Towards lignin consolidated bioprocessing: simultaneous lignin depolymerization and product generation by bacteria. Green Chem. 17: 4951-4967. 

  10. Proc. Natl. Acad. Sci. USA. J G Linger 111 12013 2014 10.1073/pnas.1410657111 Linger, J. G., D. R. Vardon, M. T. Guarnieri, E. M. Karp, G. B. Hunsinger, M. A. Franden, C. W. Johnson, G. Chupka, T. J. Strathmann, P. T. Pienkos, and G. T. Beckham (2014) Lignin valorization through integrated biological funneling and chemical catalysis. Proc. Natl. Acad. Sci. USA. 111: 12013-12018. 

  11. Green Chem. L Lin 18 5536 2016 10.1039/C6GC01131D Lin, L., Y. Cheng, Y. Pu, S. Sun, X. Li, M. Jin, E. A. Pierson, D. C. Gross, B. E. Dale, S. Y. Dai, A. J. Ragauskas, and J. S. Yuan (2016) Systems biology-guided biodesign of consolidated lignin conversion. Green Chem. 18: 5536-5547. 

  12. Metab. Eng. P I Nikel 50 142 2018 10.1016/j.ymben.2018.05.005 Nikel, P. I. and V. de Lorenzo (2018) Pseudomonas putida as a functional chassis for industrial biocatalysis: from native biochemistry to trans-metabolism. Metab. Eng. 50: 142-155. 

  13. Front. Microbiol. A Domröse 6 972 2015 10.3389/fmicb.2015.00972 Domröse, A., A. S. Klein, J. Hage-Hülsmann, S. Thies, V. Svensson, T. Classen, J. Pietruszka, K. E. Jaeger, T. Drepper, and A. Loeschcke (2015) Efficient recombinant production of prodigiosin in Pseudomonas putida. Front. Microbiol. 6: 972. 

  14. Environ. Microbiol. E Martínez-García 13 2702 2011 10.1111/j.1462-2920.2011.02538.x Martínez-García, E. and V. de Lorenzo (2011) Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ. Microbiol. 13: 2702-2716. 

  15. FEMS Microbiol. Lett. Z Chen 363 fnw231 2016 10.1093/femsle/fnw231 Chen, Z., W. Ling, and G. Shang (2016) Recombineering and I-SceI-mediated Pseudomonas putida KT2440 scarless gene deletion. FEMS Microbiol. Lett. 363: fnw231. 

  16. Environ. Microbiol. E Martínez-García 16 291 2014 10.1111/1462-2920.12309 Martínez-García, E., P. I. Nikel, M. Chavarría, and V. de Lorenzo (2014) The metabolic cost of flagellar motion in Pseudomonas putida KT 2440. Environ. Microbiol. 16: 291-303. 

  17. Microb. Biotechnol. D Salvachúa 13 290 2020 10.1111/1751-7915.13481 Salvachúa, D., T. Rydzak, R. Auwae, A. De Capite, B. A. Black, J. T. Bouvier, N. S. Cleveland, J. R. Elmore, J. D. Huenemann, R. Katahira, W. E. Michener, D. J. Peterson, H. Rohrer, D. R. Vardon, G. T. Beckham, and A. M. Guss (2020) Metabolic engineering of Pseudomonas putida for increased polyhydroxyalkanoate production from lignin. Microb. Biotechnol. 13: 290-298. 

  18. FEMS Microbiol. Lett. X Y Y Luo 363 fnw014 2016 10.1093/femsle/fnw014 Luo, X., Y. Yang, W. Ling, H. Zhuang, Q. Li, and G. Shang (2016) Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination. FEMS Microbiol. Lett. 363: fnw014. 

  19. Microb. Biotechnol. K R Choi 13 199 2020 10.1111/1751-7915.13374 Choi, K. R. and S. Y. Lee (2020) Protocols for RecET-based markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Microb. Biotechnol. 13: 199-209. 

  20. Metab. Eng. K R Choi 47 463 2018 10.1016/j.ymben.2018.05.003 Choi, K. R., J. S. Cho, I. J. Cho, D. Park, and S. Y. Lee (2018) Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in Pseudomonas putida. Metab. Eng. 47: 463-474. 

  21. Curr. Opin. Biotechnol. E Martínez-García 47 120 2017 10.1016/j.copbio.2017.06.013 Martínez-García, E. and V. de Lorenzo (2017) Molecular tools and emerging strategies for deep genetic/genomic refactoring of Pseudomonas. Curr. Opin. Biotechnol. 47: 120-132. 

  22. Microb. Cell Fact. J Sun 17 41 2018 10.1186/s12934-018-0887-x Sun, J., Q. Wang, Y. Jiang, Z. Wen, L. Yang, J. Wu, and S. Yang (2018) Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system. Microb. Cell Fact. 17: 41. 

  23. J. Bacteriol. S Z Tan 200 e00575 2018 10.1128/JB.00575-17 Tan, S. Z., C. R. Reisch, and K. L. Prather (2018) A robust CRISPR interference gene repression system in Pseudomonas. J. Bacteriol. 200: e00575-00517. 

  24. Nat. Commun. I Mougiakos 8 1647 2017 10.1038/s41467-017-01591-4 Mougiakos, I., P. Mohanraju, E. F. Bosma, V. Vrouwe, M. F. Bou, M. I. Naduthodi, A. Gussak, R. B. Brinkman, R. Van Kranenburg, and J. Van Der Oost (2017) Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Nat. Commun. 8: 1647. 

  25. Biotechnol. J. T Aparicio 13 e1700161 2018 10.1002/biot.201700161 Aparicio, T., V. de Lorenzo, and E. Martínez-García (2018) CRISPR/Cas9-based counterselection boosts recombineering efficiency in Pseudomonas putida. Biotechnol. J. 13: e1700161. 

  26. Microb. Cell Fact. S Lieder 14 23 2015 10.1186/s12934-015-0207-7 Lieder, S., P. I. Nikel, V. de Lorenzo, and R. Takors (2015) Genome reduction boosts heterologous gene expression in Pseudomonas putida. Microb. Cell Fact. 14: 23. 

  27. Microb. Cell Fact. E Martínez-García 13 159 2014 10.1186/s12934-014-0159-3 Martínez-García, E., P. I. Nikel, T. Aparicio, and V. de Lorenzo (2014) Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression. Microb. Cell Fact. 13: 159. 

  28. Appl. Microbiol. Biotechnol. J Wang 102 10523 2018 10.1007/s00253-018-9439-x Wang, J., W. Ma, Y. Wang, L. Lin, T. Wang, Y. Wang, Y. Li, and X. Wang (2018) Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida. Appl. Microbiol. Biotechnol. 102: 10523-10539. 

  29. AMB Express. J García-Hidalgo 9 34 2019 10.1186/s13568-019-0759-8 García-Hidalgo, J., K. Ravi, L. L. Kuré, G. Lidén, and M. Gorwa-Grauslund (2019) Identification of the two-component guaiacol demethylase system from Rhodococcus rhodochrous and expression in Pseudomonas putida EM42 for guaiacol assimilation. AMB Express. 9: 34. 

  30. Gene. V de Lorenzo 123 17 1993 10.1016/0378-1119(93)90533-9 de Lorenzo, V., L. Eltis, B. Kessler, and K. N. Timmis (1993) Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene. 123: 17-24. 

  31. Gene J Pérez-Martin 172 81 1996 10.1016/0378-1119(96)00193-X Pérez-Martin, J. and V. de Lorenzo (1996) VTR expression cassettes for engineering conditional phenotypes in Pseudomonas: activity of the Pu promoter of the TOL plasmid under limiting concentrations of the XylR activator protein. Gene. 172: 81-86. 

  32. Gene. V de Lorenzo 130 41 1993 10.1016/0378-1119(93)90344-3 de Lorenzo, V., S. Fernández, M. Herrero, U. Jakubzik, and K. N. Timmis (1993) Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. Gene. 130: 41-46. 

  33. Microb. Biotechnol. A Gawin 10 702 2017 10.1111/1751-7915.12701 Gawin, A., S. Valla, and T. Brautaset (2017) The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb. Biotechnol. 10: 702-718. 

  34. Appl. Microbiol. Biotechnol. A Wittgens 102 1229 2018 10.1007/s00253-017-8702-x Wittgens, A., B. Santiago-Schuebel, M. Henkel, T. Tiso, L. M. Blank, R. Hausmann, D. Hofmann, S. Wilhelm, K. E. Jaeger, and F. Rosenau (2018) Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Appl. Microbiol. Biotechnol. 102: 1229-1239. 

  35. Nucleic Acids Res. R Silva-Rocha 41 D666 2013 10.1093/nar/gks1119 Silva-Rocha, R., E. Martínez-García, B. Calles, M. Chavarría, A. Arce-Rodríguez, A. de Las Heras, A. D. Paez-Espino, G. Durante-Rodríguez, J. Kim, P. I. Nikel, R. Platero, and V. de Lorenzo (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res. 41: D666-D675. 

  36. Nucleic Acids Res. E Martínez-García 43 D1183 2015 10.1093/nar/gku1114 Martínez-García, E., T. Aparicio, A. Goñi-Moreno, S. Fraile, and V. de Lorenzo (2015) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res. 43: D1183-D1189. 

  37. Nucleic Acids Res. E Martínez-García 48 D1164 2020 10.1093/nar/gkz1024 Martínez-García, E., A. Goñi-Moreno, B. Bartley, J. McLaughlin, L. Sánchez-Sampedro, H. Pascual del Pozo, C. P. Hernández, A. S. Marletta, D. De Lucrezia, G. Sánchez-Fernández, S. Fraile, and V. de Lorenzo (2020) SEVA 3.0: an update of the Standard European Vector Architecture for enabling portability of genetic constructs among diverse bacterial hosts. Nucleic Acids Res. 48: D1164-D1170. 

  38. Curr. Opin. Chem. Biol. T D H Bugg 55 26 2020 10.1016/j.cbpa.2019.11.007 Bugg, T. D. H., J. J. Williamson, and G. M. M. Rashid (2020) Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass. Curr. Opin. Chem. Biol. 55: 26-33. 

  39. FEMS Microbiol. Lett. A Choudhary 364 fnx118 2017 10.1093/femsle/fnx118 Choudhary, A., H. Purohit, and P. S. Phale (2017) Benzoate transport in Pseudomonas putida CSV86. FEMS Microbiol. Lett. 364: fnx118. 

  40. J. Bacteriol. N N Nichols 179 5056 1997 10.1128/JB.179.16.5056-5061.1997 Nichols, N. N. and C. S. Harwood (1997) PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol. 179: 5056-5061. 

  41. Proteins. K C C Tan 81 1709 2013 10.1002/prot.24305 Tan, K., C. Chang, M. Cuff, J. Osipiuk, E. Landorf, J. C. Mack, S. Zerbs, A. Joachimiak, and F. R. Collart (2013) Structural and functional characterization of solute binding proteins for aromatic compounds derived from lignin: p-coumaric acid and related aromatic acids. Proteins. 81: 1709-1726. 

  42. Commun. Biol. M Fujita 2 432 2019 10.1038/s42003-019-0676-z Fujita, M., K. Mori, H. Hara, S. Hishiyama, N. Kamimura, and E. Masai (2019) A TonB-dependent receptor constitutes the outer membrane transport system for a lignin-derived aromatic compound. Commun. Biol. 2: 432. 

  43. Proc. Natl. Acad. Sci. USA. J V Vermaas 116 23117 2019 10.1073/pnas.1904643116 Vermaas, J. V., R. A. Dixon, F. Chen, S. D. Mansfield, W. Boerjan, J. Ralph, M. F. Crowley, and G. T. Beckham (2019) Passive membrane transport of lignin-related compounds. Proc. Natl. Acad. Sci. USA. 116: 23117-23123. 

  44. Curr. Opin. Biotechnol. G T Beckham 42 40 2016 10.1016/j.copbio.2016.02.030 Beckham, G. T., C. W. Johnson, E. M. Karp, D. Salvachúa, and D. R. Vardon (2016) Opportunities and challenges in biological lignin valorization. Curr. Opin. Biotechnol. 42: 40-53. 

  45. Proc. Int. Acad. Ecol. Environ. Sci. R Singh 4 1 2014 Singh, R., P. Singh, and R. Sharma (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proc. Int. Acad. Ecol. Environ. Sci. 4: 1-6. 

  46. J. Bacteriol. G Morales 186 1337 2004 10.1128/JB.186.5.1337-1344.2004 Morales, G., J. F. Linares, A. Beloso, J. P. Albar, J. L. Martínez, and F. Rojo (2004) The Pseudomonas putida Crc global regulator controls the expression of genes from several chromosomal catabolic pathways for aromatic compounds. J. Bacteriol. 186: 1337-1344. 

  47. Environ. Microbiol. S Hernández-Arranz 15 227 2013 10.1111/j.1462-2920.2012.02863.x Hernández-Arranz, S., R. Moreno, and F. Rojo (2013) The translational repressor Crc controls the Pseudomonas putida benzoate and alkane catabolic pathways using a multi-tier regulation strategy. Environ. Microbiol. 15: 227-241. 

  48. Metab. Eng. Commun. C W Johnson 5 19 2017 10.1016/j.meteno.2017.05.002 Johnson, C. W., P. E. Abraham, J. G. Linger, P. Khanna, R. L. Hettich, and G. T. Beckham (2017) Eliminating a global regulator of carbon catabolite repression enhances the conversion of aromatic lignin monomers to muconate in Pseudomonas putida KT2440. Metab. Eng. Commun. 5: 19-25. 

  49. Biomass Conv. Bioref. O Y Abdelaziz 8 455 2018 10.1007/s13399-017-0294-2 Abdelaziz, O. Y., K. Li, P. Tunå, and C. P. Hulteberg (2018) Continuous catalytic depolymerisation and conversion of industrial kraft lignin into low-molecular-weight aromatics. Biomass Conv. Bioref. 8: 455-470. 

  50. Bioresour. Technol. N Mosier 96 673 2005 10.1016/j.biortech.2004.06.025 Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686. 

  51. Biotechnol. Bioprocess Eng. S Banerjee 24 713 2019 10.1007/s12257-019-0134-2 Banerjee, S., G. Mishra, and A. Roy (2019) Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnol. Bioprocess Eng. 24: 713-733. 

  52. PLoS Comput. Biol. J Puchałka 4 e1000210 2008 10.1371/journal.pcbi.1000210 Puchałka, J., M. A. Oberhardt, M. Godinho, A. Bielecka, D. Regenhardt, K. N. Timmis, J. A. Papin, and V. A. P. M. Dos Santos (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput. Biol. 4: e1000210. 

  53. Appl. Environ. Microbiol. A Basu 72 2226 2006 10.1128/AEM.72.3.2226-2230.2006 Basu, A., S. K. Apte, and P. S. Phale (2006) Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl. Environ. Microbiol. 72: 2226-2230. 

  54. Metab. Eng. P Dvořák 48 94 2018 10.1016/j.ymben.2018.05.019 Dvořák, P. and V. de Lorenzo (2018) Refactoring the upper sugar metabolism of Pseudomonas putida for co-utilization of cellobiose, xylose, and glucose. Metab. Eng. 48: 94-108. 

  55. Enzyme Microb. Technol. P Vinuselvi 50 1 2012 10.1016/j.enzmictec.2011.10.001 Vinuselvi, P. and S. K. Lee (2012) Engineered Escherichia coli capable of co-utilization of cellobiose and xylose. Enzyme Microb. Technol. 50: 1-4. 

  56. Microb. Cell Fact. J Lee 15 20 2016 10.1186/s12934-016-0420-z Lee, J., J. N. Saddler, Y. Um, and H. M. Woo (2016) Adaptive evolution and metabolic engineering of a cellobiose- and xylose-negative Corynebacterium glutamicum that co-utilizes cellobiose and xylose. Microb. Cell Fact. 15: 20. 

  57. GCB Bioenergy. Y Wang 11 249 2019 10.1111/gcbb.12590 Wang, Y., F. Horlamus, M. Henkel, F. Kovacic, S. Schläfle, R. Hausmann, A. Wittgens, and F. Rosenau (2019) Growth of engineered Pseudomonas putida KT2440 on glucose, xylose, and arabinose: Hemicellulose hydrolysates and their major sugars as sustainable carbon sources. GCB Bioenergy. 11: 249-259. 

  58. Metab. Eng. A Sánchez-Pascuala 54 200 2019 10.1016/j.ymben.2019.04.005 Sánchez-Pascuala, A., L. Fernandez-Cabezon, V. de Lorenzo, and P. I. Nikel (2019) Functional implementation of a linear glycolysis for sugar catabolism in Pseudomonas putida. Metab. Eng. 54: 200-211. 

  59. Front. Bioeng. Biotechnol. N J H Averesch 6 32 2018 10.3389/fbioe.2018.00032 Averesch, N. J. H. and J. O. Krömer (2018) Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-present and future strain construction strategies. Front. Bioeng. Biotechnol. 6: 32. 

  60. Met. Eng. Commun. C W Johnson 3 111 2016 10.1016/j.meteno.2016.04.002 Johnson, C. W., D. Salvachúa, P. Khanna, H. Smith, D. J. Peterson, and G. T. Beckham (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compounds via increased protocatechuate decarboxylase activity. Met. Eng. Commun. 3: 111-119. 

  61. Appl. Microbiol. Biotechnol. H M Jung 99 5217 2015 10.1007/s00253-015-6442-3 Jung, H. M., M. Y. Jung, and M. K. Oh (2015) Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid. Appl. Microbiol. Biotechnol. 99: 5217-5225. 

  62. J. Biotechnol. J H Lee 257 211 2017 10.1016/j.jbiotec.2016.11.016 Lee, J. H. and V. F. Wendisch (2017) Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J. Biotechnol. 257: 211-221. 

  63. Bioresour. Technol. S D N Lee 114 450 2012 10.1016/j.biortech.2012.02.085 Lee, S., D. Nam, J. Y. Jung, M. K. Oh, B. I. Sang, and R. J. Mitchell (2012) Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds. Bioresour. Technol. 114: 450-456. 

  64. Chem. Eng. Res. Des. E A B da Silva 87 1276 2009 10.1016/j.cherd.2009.05.008 da Silva, E. A. B., M. Zabkova, J. D. Araújo, C. A. Cateto, M. F. Barreiro, M. N. Belgacem, and A. E. Rodrigues (2009) An integrated process to produce vanillin and lignin-based polyurethanes from Kraft lignin. Chem. Eng. Res. Des. 87: 1276-1292. 

  65. ACS Chem. Biol. P D Sainsbury 8 2151 2013 10.1021/cb400505a Sainsbury, P. D., E. M. Hardiman, M. Ahmad, H. Otani, N. Seghezzi, L. D. Eltis, and T. D. H. Bugg (2013) Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1. ACS Chem. Biol. 8: 2151-2156. 

  66. Appl. Microbiol. Biotechnol. N Graf 98 137 2014 10.1007/s00253-013-5303-1 Graf, N. and J. Altenbuchner (2014) Genetic engineering of Pseudomonas putida KT2440 for rapid and high-yield production of vanillin from ferulic acid. Appl. Microbiol. Biotechnol. 98: 137-149. 

  67. ACS Sustainable Chem. Eng. A Rodriguez 5 8171 2017 10.1021/acssuschemeng.7b01818 Rodriguez, A., D. Salvachúa, R. Katahira, B. A. Black, N. S. Cleveland, M. Reed, H. Smith, E. E. K. Baidoo, J. D. Keasling, B. A. Simmons, G. T. Beckham, and J. M. Gladden (2017) Base-catalyzed depolymerization of solid lignin-rich streams enables microbial conversion. ACS Sustainable Chem. Eng. 5: 8171-8180. 

  68. J. Biotechnol. J B J H Van Duuren 156 163 2011 10.1016/j.jbiotec.2011.08.030 Van Duuren, J. B. J. H., D. Wijte, A. Leprince, B. Karge, J. Puchałka, J. Wery, V. A. P. M. Dos Santos, G. Eggink, and A. E. Mars (2011) Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield. J. Biotechnol. 156: 163-172. 

  69. Energy Envrion. Sci. D R Vardon 8 617 2015 10.1039/C4EE03230F Vardon, D. R., M. A. Franden, C. W. Johnson, E. M. Karp, M. T. Guarnieri, J. G. Linger, M. J. Salm, T. J. Strathmann, and G. T. Beckham (2015) Adipic acid production from lignin. Energy Envrion. Sci. 8: 617-628. 

  70. Green Chem. D Salvachúa 20 5007 2018 10.1039/C8GC02519C Salvachúa, D., C. W. Johnson, C. A. Singer, H. Rohrer, D. J. Peterson, B. A. Black, A. Knapp, and G. T. Beckham (2018) Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chem. 20: 5007-5019. 

  71. J. Clean. Prod. M Brodin 162 646 2017 10.1016/j.jclepro.2017.05.209 Brodin, M., M. Vallejos, M. T. Opedal, M. C. Area, and G. Chinga-Carrasco (2017) Lignocellulosics as sustainable resources for production of bioplastics - A review. J. Clean. Prod. 162: 646-664. 

  72. Biomacromolecules. X Zhang 10 707 2009 10.1021/bm801424e Zhang, X., R. Luo, Z. Wang, Y. Deng, and G. Q. Chen (2009) Application of (R)-3-hydroxyalkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuels. Biomacromolecules. 10: 707-711. 

  73. Biomass Bioenergy. S Y Wang 34 1216 2010 10.1016/j.biombioe.2010.03.020 Wang, S. Y., Z. Wang, M. M. Liu, Y. Xu, X. J. Zhang, and G. Q. Chen (2010) Properties of a new gasoline oxygenate blend component: 3-hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass Bioenergy. 34: 1216-1222. 

  74. ACS Sustainable Chem. Eng. S Tomizawa 2 1106 2014 10.1021/sc500066f Tomizawa, S., J. A. Chuah, K. Matsumoto, Y. Doi, and K. Numata (2014) Understanding the limitations in the biosynthesis of polyhydroxyalkanoate (PHA) from lignin derivatives. ACS Sustainable Chem. Eng. 2: 1106-1113. 

  75. Appl. Environ. Microbiol. X Wang 84 e01469 2018 Wang, X., L. Lin, J. Dong, J. Ling, W. Wang, H. Wang, Z. Zhang, and X. Yu (2018) Simultaneous improvements of Pseudomonas cell growth and polyhydroxyalkanoate production from a lignin derivative for lignin-consolidated bioprocessing. Appl. Environ. Microbiol. 84: e01469-01418. 

  76. Appl. Microbiol. Biotechnol. H H Wang 89 1497 2011 10.1007/s00253-010-2964-x Wang, H. H., X. R. Zhou, Q. Liu, and G. Q. Chen (2011) Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl. Microbiol. Biotechnol. 89: 1497-1507. 

  77. PLoS One. T T Tran 15 e0218302 2020 10.1371/journal.pone.0218302 Tran, T. T. and T. C. Charles (2020) Lactic acid containing polymers produced in engineered Sinorhizobium meliloti and Pseudomonas putida. PLoS One. 15: e0218302. 

  78. Food Res. Int. I Eş 107 763 2018 10.1016/j.foodres.2018.01.001 Eş, I., A. M. Khaneghah, F. J. Barba, J. A. Saraiva, A. S. Sant’Ana, and S. M. B. Hashemi (2018) Recent advancements in lactic acid production-a review. Food Res. Int. 107: 763-770. 

  79. Met. Eng. C W Johnson 28 240 2015 10.1016/j.ymben.2015.01.005 Johnson, C. W. and G. T. Beckham (2015) Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. Met. Eng. 28: 240-247. 

  80. Microb. Cell Fact. J Yang 18 168 2019 10.1186/s12934-019-1213-y Yang, J., J. H. Son, H. Kim, S. Cho, J. Na, Y. J. Yeon, and J. Lee (2019) Mevalonate production from ethanol by direct conversion through acetyl-CoA using recombinant Pseudomonas putida, a novel biocatalyst for terpenoid production. Microb. Cell Fact. 18: 168. 

  81. Biotechnol. Bioprocess Eng. J H Lee 23 250 2018 10.1007/s12257-018-0017-y Lee, J. H., S. Lama, J. R. Kim, and S. H. Park (2018) Production of 1,3-propanediol from glucose by recombinant Escherichia coli BL21 (DE3). Biotechnol. Bioprocess Eng. 23: 250-258. 

  82. Appl. Microbiol. Biotechnol. K Nijkamp 74 617 2007 10.1007/s00253-006-0703-0 Nijkamp, K., R. G. M. Westerhof, H. Ballerstedt, J. A. M. De Bont, and J. Wery (2007) Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose. Appl. Microbiol. Biotechnol. 74: 617-624. 

  83. Front. Bioeng. Biotechnol. S Yu 4 90 2016 Yu, S., M. R. Plan, G. Winter, and J. O. Krömer (2016) Metabolic engineering of Pseudomonas putida KT2440 for the production of para-hydroxy benzoic acid. Front. Bioeng. Biotechnol. 4: 90. 

  84. Appl. Environ. Microbiol. N J P Wierckx 71 8221 2005 10.1128/AEM.71.12.8221-8227.2005 Wierckx, N. J. P., H. Ballerstedt, J. A. M. de Bont, and J. Wery (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl. Environ. Microbiol. 71: 8221-8227. 

  85. Nat. Chem. Biol. H R Beller 14 451 2018 10.1038/s41589-018-0017-4 Beller, H. R., A. V. Rodrigues, K. Zargar, Y. W. Wu, A. K. Saini, R. M. Saville, J. H. Pereira, P. D. Adams, S. G. Tringe, C. J. Petzold, and J. D. Keasling (2018) Discovery of enzymes for toluene synthesis from anoxic microbial communities. Nat. Chem. Biol. 14: 451-457. 

  86. Sci. Rep. K K Kwon 8 2659 2018 10.1038/s41598-018-20943-8 Kwon, K. K., D. H. Lee, S. J. Kim, S. L. Choi, E. Rha, S. J. Yeom, B. Subhadra, J. Lee, K. J. Jeong, and S. G. Lee (2018) Evolution of enzymes with new specificity by high-throughput screening using DmpR-based genetic circuits and multiple flow cytometry rounds. Sci. Rep. 8: 2659. 

  87. ACS Synth. Biol. J C H Ho 7 392 2018 10.1021/acssynbio.7b00412 Ho, J. C. H., S. V. Pawar, S. J. Hallam, and V. G. Yadav (2018) An improved whole-cell biosensor for the discovery of lignintransforming enzymes in functional metagenomic screens. ACS Synth. Biol. 7: 392-398. 

  88. Proc. Natl. Acad. Sci. USA. C R Strachan 111 10143 2014 10.1073/pnas.1401631111 Strachan, C. R., R. Singh, D. VanInsberghe, K. Ievdokymenko, K. Budwill, W. W. Mohn, L. D. Eltis, and S. J. Hallam (2014) Metagenomic scaffolds enable combinatorial lignin transformation. Proc. Natl. Acad. Sci. USA. 111: 10143-10148. 

  89. Metab. Eng. Commun. R K Jha 6 33 2018 10.1016/j.meteno.2018.03.001 Jha, R. K., J. M. Bingen, C. W. Johnson, T. L. Kern, P. Khanna, D. S. Trettel, C. E. M. Strauss, G. T. Beckham, and T. Dale (2018) A protocatechuate biosensor for Pseudomonas putida KT2440 via promoter and protein evolution. Metab. Eng. Commun. 6: 33-38. 

  90. Anal. Bioanal. Chem. H J Kim 410 1191 2018 10.1007/s00216-017-0751-6 Kim, H. J., H. Jeong, and S. J. Lee (2018) Synthetic biology for microbial heavy metal biosensors. Anal. Bioanal. Chem. 410: 1191-1203. 

  91. Biotechnol. Bioprocess Eng. N H Nguyen 23 564 2018 10.1007/s12257-018-0390-6 Nguyen, N. H., J. R. Kim, and S. Park (2018) Application of transcription factor-based 3-hydroxypropionic acid biosensor. Biotechnol. Bioprocess Eng. 23: 564-572. 

  92. Sensors. Q Gui 17 1623 2017 10.3390/s17071623 Gui, Q., T. Lawson, S. Shan, L. Yan, and Y. Liu (2017) The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors. 17: 1623. 

  93. Metab. Eng. M Kohlstedt 47 279 2018 10.1016/j.ymben.2018.03.003 Kohlstedt, M., S. Starck, N. Barton, J. Stolzenberger, M. Selzer, K. Mehlmann, R. Schneider, D. Pleissner, J. Rinkel, J. S. Dickschat, J. Venus, J. B. J. H. van Duuren, and C. Wittmann (2018) From lignin to nylon: cascaded chemical and biochemical conversion using metabolically engineered Pseudomonas putida. Metab. Eng. 47: 279-293. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로