$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Visual number sense in untrained deep neural networks 원문보기

Science advances, v.7 no.1, 2021년, pp.eabd6127 -   

Kim, Gwangsu (Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.) ,  Jang, Jaeson (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.) ,  Baek, Seungdae (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.) ,  Song, Min (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.) ,  Paik, Se-Bum (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.)

Abstract AI-Helper 아이콘AI-Helper

Visual number sense can arise spontaneously in untrained deep neural networks in the complete absence of learning.Number sense, the ability to estimate numerosity, is observed in naïve animals, but how this cognitive function emerges in the brain remains unclear. Here, using an artificial deep ...

참고문헌 (57)

  1. 1 Burr D. C. , Anobile G. , Arrighi R. , Psychophysical evidence for the number sense . Philos. Trans. R. Soc. B Biol. Sci. 373 , 20170045 ( 2018 ). 

  2. 2 Halberda J. , Mazzocco M. M. M. , Feigenson L. , Individual differences in non-verbal number acuity correlate with maths achievement . Nature 455 , 665 – 668 ( 2008 ). 18776888 

  3. 3 Nieder A. , The neuronal code for number . Nat. Rev. Neurosci. 17 , 366 – 382 ( 2016 ). 27150407 

  4. 4 Izard V. , Sann C. , Spelke E. S. , Streri A. , Newborn infants perceive abstract numbers . Proc. Natl. Acad. Sci. U.S.A. 106 , 10382 – 10385 ( 2009 ). 19520833 

  5. 5 Rugani R. , Vallortigara G. , Priftis K. , Regolin L. , Number-space mapping in the newborn chick resembles humans’ mental number line . Science 347 , 534 – 536 ( 2015 ). 25635096 

  6. 6 Viswanathan P. , Nieder A. , Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices . Proc. Natl. Acad. Sci. U.S.A. 110 , 11187 – 11192 ( 2013 ). 23776242 

  7. 7 Wagener L. , Loconsole M. , Ditz H. M. , Nieder A. , Neurons in the endbrain of numerically naive crows spontaneously encode visual numerosity . Curr. Biol. 28 , 1090 – 1094.e4 ( 2018 ). 29551415 

  8. 8 Krizhevsky A. , Sutskever I. , Hinton G. E. , ImageNet classification with deep convolutional neural networks . Adv. Neural Inf. Process. Syst. (NIPS) , 1097 – 1105 ( 2012 ). 

  9. 9 Yamins D. L. K. , Hong H. , Cadieu C. F. , Solomon E. A. , Seibert D. , DiCarlo J. J. , Performance-optimized hierarchical models predict neural responses in higher visual cortex . Proc. Natl. Acad. Sci. U.S.A. 111 , 8619 – 8624 ( 2014 ). 24812127 

  10. 10 Ullman S. , Vidal-Naquet M. , Sali E. , Visual features of intermediate complexity and their use in classification . Nat. Neurosci. 5 , 682 – 687 ( 2002 ). 12055634 

  11. 11 Di Nuovo A. , McClelland J. L. , Developing the knowledge of number digits in a child-like robot . Nat. Mach. Intell. 1 , 594 – 605 ( 2019 ). 

  12. 12 Cadieu C. F. , Hong H. , Yamins D. L. K. , Pinto N. , Ardila D. , Solomon E. A. , Majaj N. J. , DiCarlo J. J. , Deep neural networks rival the representation of primate IT cortex for core visual object recognition . PLOS Comput. Biol. 10 , e1003963 ( 2014 ). 25521294 

  13. 13 Khaligh-Razavi S.-M. , Henriksson L. , Kay K. , Kriegeskorte N. , Fixed versus mixed RSA: Explaining visual representations by fixed and mixed feature sets from shallow and deep computational models . J. Math. Psychol. 76 ( Pt. B ), 184 – 197 ( 2017 ). 28298702 

  14. 14 Cichy R. M. , Roig G. , Andonian A. , Dwivedi K. , Lahner B. , Lascelles A. , Mohsenzadeh Y. , Ramakrishnan K. , Oliva A. , The algonauts project: A platform for communication between the sciences of biological and artificial intelligence . arXiv 1905.05675 , ( 2019 ). 

  15. 15 Bashivan P. , Kar K. , DiCarlo J. J. , Neural population control via deep image synthesis . Science 364 , eaav9436 ( 2019 ). 31048462 

  16. 16 Stoianov I. , Zorzi M. , Emergence of a ’visual number sense’ in hierarchical generative models . Nat. Neurosci. 15 , 194 – 196 ( 2012 ). 22231428 

  17. 17 Verguts T. , Fias W. , Representation of number in animals and humans: A neural model . J. Cogn. Neurosci. 16 , 1493 – 1504 ( 2004 ). 15601514 

  18. 18 Dehaene S. , Changeux J.-P. , Development of elementary numerical abilities: A neuronal model . J. Cogn. Neurosci. 5 , 390 – 407 ( 1993 ). 23964915 

  19. 19 Zorzi M. , Testolin A. , An emergentist perspective on the origin of number sense . Philos. Trans. R. Soc. B Biol. Sci. 373 , 20170043 ( 2018 ). 

  20. 20 Testolin A. , Zou W. Y. , McClelland J. L. , Numerosity discrimination in deep neural networks: Initial competence, developmental refinement and experience statistics . Dev. Sci. 23 , e12940 ( 2020 ). 31977137 

  21. 21 Nasr K. , Viswanathan P. , Nieder A. , Number detectors spontaneously emerge in a deep neural network designed for visual object recognition . Sci. Adv. 5 , eaav7903 ( 2019 ). 31086820 

  22. 22 Ullman S. , Harari D. , Dorfman N. , From simple innate biases to complex visual concepts . Proc. Natl. Acad. Sci. U.S.A. 109 , 18215 – 18220 ( 2012 ). 23012418 

  23. 23 Hannagan T. , Nieder A. , Viswanathan P. , Dehaene S. , A random-matrix theory of the number sense . Philos. Trans. R. Soc. B Biol. Sci. 373 , 20170253 ( 2018 ). 

  24. 24 Ulyanov D. , Vedaldi A. , Lempitsky V. , Deep image prior . Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR) , 9446 – 9454 ( 2018 ). 

  25. 25 Ramanujan V. , Wortsman M. , Kembhavi A. , Farhadi A. , Rastegari M. , What’s hidden in a randomly weighted neural network? arXiv 1911.13299 , ( 2019 ). 

  26. 26 Chen Q. , Verguts T. , Spontaneous summation or numerosity-selective coding? Front. Hum. Neurosci. 7 , 886 ( 2013 ). 24391574 

  27. 27 Nieder A. , Merten K. , A labeled-line code for small and large numerosities in the monkey prefrontal cortex . J. Neurosci. 27 , 5986 – 5993 ( 2007 ). 17537970 

  28. 28 He K. , Zhang X. , Ren S. , Sun J. , Delving deep into rectifiers: Surpassing human-level performance on imageNet classification . Proc. IEEE Int. Conf. Comput. Vis. (ICCV) , 1026 – 1034 ( 2015 ). 

  29. 29 Y. A. LeCun, L. Bottou, G. B. Orr, K.-R. Müller, Efficient Backprop (Springer, Berlin, Heidelberg, 2012), pp. 9–48. 

  30. 30 M. Bekoff, C. Allen, G. M. Burghardt, The Cognitive Animal: Empirical and Theoretical Perspectives on Animal Cognition (MIT Press, Cambridge, MA, 2002). 

  31. 31 Cantlon J. F. , Brannon E. M. , Semantic congruity affects numerical judgments similarly in monkeys and humans . Proc. Natl. Acad. Sci. U.S.A. 102 , 16507 – 16511 ( 2005 ). 16260752 

  32. 32 Cantlon J. F. , Brannon E. M. , Shared system for ordering small and large numbers in monkeys and humans . Psychol. Sci. 17 , 401 – 406 ( 2006 ). 16683927 

  33. 33 Roitman J. D. , Brannon E. M. , Platt M. L. , Monotonic coding of numerosity in macaque lateral intraparietal area . PLOS Biol. 5 , e208 ( 2007 ). 17676978 

  34. 34 Nieder A. , Freedman D. J. , Miller E. K. , Representation of the quantity of visual items in the primate prefrontal cortex . Science 297 , 1708 – 1711 ( 2002 ). 12215649 

  35. 35 Leibovich T. , Katzin N. , Harel M. , Henik A. , From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition . Behav. Brain Sci. 40 , e164 ( 2017 ). 27530053 

  36. 36 Burr D. C. , Evidence for a number sense . Behav. Brain Sci. 40 , e167 ( 2017 ). 29342625 

  37. 37 Lourenco S. F. , Aulet L. S. , Ayzenberg V. , Cheung C.-N. , Holmes K. J. , Right idea, wrong magnitude system . Behav. Brain Sci. 40 , e177 ( 2017 ). 29342631 

  38. 38 Nieder A. , Number faculty is alive and kicking: On number discriminations and number neurons . Behav. Brain Sci. 40 , e181 ( 2017 ). 29342639 

  39. 39 Park J. , DeWind N. K. , Brannon E. M. , Direct and rapid encoding of numerosity in the visual stream . Behav. Brain Sci. 40 , e185 ( 2017 ). 29342634 

  40. 40 Stoianov I. P. , Zorzi M. , Computational foundations of the visual number sense . Behav. Brain Sci. 40 , e191 ( 2017 ). 29342650 

  41. 41 Van Rinsveld A. , Guillaume M. , Kohler P. J. , Schiltz C. , Gevers W. , Content A. , The neural signature of numerosity by separating numerical and continuous magnitude extraction in visual cortex with frequency-tagged EEG . Proc. Natl. Acad. Sci. U.S.A. 117 , 5726 – 5732 ( 2020 ). 32123113 

  42. 42 Testolin A. , Dolfi S. , Rochus M. , Zorzi M. , Visual sense of number vs . sense of magnitude in humans and machines . Sci. Rep. 10 , 10045 ( 2020 ). 32572067 

  43. 43 Paik S.-B. , Ringach D. L. , Retinal origin of orientation maps in visual cortex . Nat. Neurosci. 14 , 919 – 925 ( 2011 ). 21623365 

  44. 44 Jang J. , Paik S.-B. , Interlayer repulsion of retinal ganglion cell mosaics regulates spatial organization of functional maps in the visual cortex . J. Neurosci. 37 , 12141 – 12152 ( 2017 ). 29114075 

  45. 45 Jang J. , Song M. , Paik S.-B. , Retino-cortical mapping ratio predicts columnar and salt-and-pepper organization in mammalian visual cortex . Cell Rep. 30 , 3270 – 3279.e3 ( 2020 ). 32160536 

  46. 46 Paik S.-B. , Ringach D. L. , Link between orientation and retinotopic maps in primary visual cortex . Proc. Natl. Acad. Sci. U.S.A. 109 , 7091 – 7096 ( 2012 ). 22509015 

  47. 47 Kim J. , Song M. , Jang J. , Paik S.-B. , Spontaneous retinal waves can generate long-range horizontal connectivity in visual cortex . J. Neurosci. 40 , 6584 – 6599 ( 2020 ). 32680939 

  48. 48 Park Y. , Choi W. , Paik S.-B. , Symmetry of learning rate in synaptic plasticity modulates formation of flexible and stable memories . Sci. Rep. 7 , 5671 ( 2017 ). 28720795 

  49. 49 Lee H. , Choi W. , Park Y. , Paik S.-B. , Distinct role of flexible and stable encodings in sequential working memory . Neural Netw. 121 , 419 – 429 ( 2020 ). 31606611 

  50. 50 Siegler R. S. , Opfer J. E. , The development of numerical estimation: Evidence for multiple representations of numerical quantity . Psychol. Sci. 14 , 237 – 243 ( 2003 ). 12741747 

  51. 51 Nieder A. , Miller E. K. , Coding of cognitive magnitude . Neuron 37 , 149 – 157 ( 2003 ). 12526780 

  52. 52 Friedman H. R. , Goldman-Rakic P. S. , Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey . J. Neurosci. 14 , 2775 – 2788 ( 1994 ). 8182439 

  53. 53 Swaminathan S. K. , Freedman D. J. , Preferential encoding of visual categories in parietal cortex compared with prefrontal cortex . Nat. Neurosci. 15 , 315 – 320 ( 2012 ). 22246435 

  54. 54 Lukoševiius M. , Jaeger H. , Reservoir computing approaches to recurrent neural network training . Comput. Sci. Rev. 3 , 127 – 149 ( 2009 ). 

  55. 55 Tanaka G. , Yamane T. , Héroux J. B. , Nakane R. , Kanazawa N. , Takeda S. , Numata H. , Nakano D. , Hirose A. , Recent advances in physical reservoir computing: A review . Neural Netw. 115 , 100 – 123 ( 2019 ). 30981085 

  56. 56 Zhang M. , Feng J. , Ma K. T. , Lim J. H. , Zhao Q. , Kreiman G. , Finding any Waldo with zero-shot invariant and efficient visual search . Nat. Commun. 9 , 3730 ( 2018 ). 30213937 

  57. 57 Palatucci M. , Pomerleau D. , Hinton G. , Mitchell T. M. , Zero-shot learning with semantic output codes . Adv. Neural Inf. Process. Syst. (NIPS) , 1410 – 1418 ( 2009 ). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로