$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces 원문보기

Nature communications, v.12 no.1, 2021년, pp.40 -   

Lee, Si Woo (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) ,  Kim, Jong Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Park, Woonghyeon (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Lee, Hyosun (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) ,  Lee, Gyu Rac (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Jung, Yousung (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Jung, Yeon Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) ,  Park, Jeong Young (Center for Nanomaterials and Chemi)

Abstract AI-Helper 아이콘AI-Helper

Interaction between metal and oxides is an important molecular-level factor that influences the selectivity of a desirable reaction. Therefore, designing a heterogeneous catalyst where metal-oxide interfaces are well-formed is important for understanding selectivity and surface electronic excitation...

참고문헌 (66)

  1. 1. Somorjai GA Frei H Park JY Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques J. Am. Chem. Soc. 2009 131 16589 16605 10.1021/ja9061954 19919130 

  2. 2. Wodtke AM Electronically non-adiabatic influences in surface chemistry and dynamics Chem. Soc. Rev. 2016 45 3641 3657 10.1039/C6CS00078A 27152489 

  3. 3. Park JY Kim SM Lee H Nedrygailov II Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity Acc. Chem. Res. 2015 48 2475 2483 10.1021/acs.accounts.5b00170 26181684 

  4. 4. Somorjai GA Park JY Molecular factors of catalytic selectivity Angew. Chem. Int. Ed. 2008 47 9212 9228 10.1002/anie.200803181 

  5. 5. Nienhaus H Electronic excitations by chemical reactions on metal surfaces Surf. Sci. Rep. 2002 45 1 78 10.1016/S0167-5729(01)00019-X 

  6. 6. Hasselbrink E How non-adiabatic are surface dynamical processes? Curr. Opin. Solid State Mater. Sci. 2006 10 192 204 10.1016/j.cossms.2007.04.003 

  7. 7. Wodtke AM Matsiev D Auerbach DJ Energy transfer and chemical dynamics at solid surfaces: the special role of charge transfer Prog. Surf. Sci. 2008 83 167 214 10.1016/j.progsurf.2008.02.001 

  8. 8. Park JY Baker LR Somorjai GA Role of hot electrons and metal?oxide interfaces in surface chemistry and catalytic reactions Chem. Rev. 2015 115 2781 2817 10.1021/cr400311p 25791926 

  9. 9. Gergen B Nienhaus H Weinberg WH McFarland EW Chemically induced electronic excitations at metal surfaces Science 2001 294 2521 2523 10.1126/science.1066134 11752571 

  10. 10. Lee H Nedrygailov II Lee C Somorjai GA Park JY Chemical­reaction­induced hot electron flows on platinum colloid nanoparticles under hydrogen oxidation: impact of nanoparticle size Angew. Chem. Int. Ed. 2015 54 2340 2344 10.1002/anie.201410951 

  11. 11. Karpov EG Nedrygailov I Nonadiabatic chemical-to-electrical energy conversion in heterojunction nanostructures Phys. Rev. B 2010 81 205443 10.1103/PhysRevB.81.205443 

  12. 12. Hashemian M Palacios E Nedrygailov I Diesing D Karpov E Thermal properties of the stationary current in mesoporous Pt/TiO 2 structures in an oxyhydrogen atmosphere ACS Appl. Mater. Interfaces 2013 5 12375 12379 10.1021/am403182v 24256205 

  13. 13. Diesing D Hasselbrink E Chemical energy dissipation at surfaces under UHV and high pressure conditions studied using metal?insulator?metal and similar devices Chem. Soc. Rev. 2016 45 3747 3755 10.1039/C5CS00932D 27186600 

  14. 14. Nienhaus H Electron-hole pair creation at Ag and Cu surfaces by adsorption of atomic hydrogen and deuterium Phys. Rev. Lett. 1999 82 446 10.1103/PhysRevLett.82.446 

  15. 15. Ro I Resasco J Christopher P Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts ACS Catal. 2018 8 7368 7387 10.1021/acscatal.8b02071 

  16. 16. Sun YN The interplay between structure and CO oxidation catalysis on metal­supported ultrathin oxide films Angew. Chem. Int. Ed. 2010 49 4418 4421 10.1002/anie.201000437 

  17. 17. Cargnello M Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts Science 2013 341 771 773 10.1126/science.1240148 23868919 

  18. 18. Tauster S Fung S Garten RL Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide J. Am. Chem. Soc. 1978 100 170 175 10.1021/ja00469a029 

  19. 19. Tauster S Fung S Baker R Horsley J Strong interactions in supported-metal catalysts Science 1981 211 1121 1125 10.1126/science.211.4487.1121 17755135 

  20. 20. Matsubu JC Adsorbate-mediated strong metal?support interactions in oxide-supported Rh catalysts Nat. Chem. 2017 9 120 127 10.1038/nchem.2607 28282057 

  21. 21. Green IX Tang W Neurock M Yates JT Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO 2 catalyst Science 2011 333 736 739 10.1126/science.1207272 21817048 

  22. 22. Haruta M Kobayashi T Sano H Yamada N Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C Chem. Lett. 1987 16 405 408 10.1246/cl.1987.405 

  23. 23. Ye R Zhao J Wickemeyer BB Toste FD Somorjai GA Foundations and strategies of the construction of hybrid catalysts for optimized performances Nat. Catal. 2018 1 318 325 10.1038/s41929-018-0052-2 

  24. 24. Gross E Liu JH-C Toste FD Somorjai GA Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time Nat. Chem. 2012 4 947 952 10.1038/nchem.1465 23089871 

  25. 25. Lee I Delbecq F Morales R Albiter MA Zaera F Tuning selectivity in catalysis by controlling particle shape Nat. Mater. 2009 8 132 138 10.1038/nmat2371 19151702 

  26. 26. Wittstock A Zielasek V Biener J Friend C Baumer M Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature Science 2010 327 319 322 10.1126/science.1183591 20075249 

  27. 27. Eren B Structure of the clean and oxygen-covered Cu (100) surface at room temperature in the presence of methanol vapor in the 10?200 mTorr pressure range J. Phys. Chem. B 2017 122 548 554 10.1021/acs.jpcb.7b04681 28749680 

  28. 28. Zugic B Dynamic restructuring drives catalytic activity on nanoporous gold?silver alloy catalysts Nat. Mater. 2017 16 558 564 10.1038/nmat4824 27992418 

  29. 29. Wang H Influence of size-induced oxidation state of platinum nanoparticles on selectivity and activity in catalytic methanol oxidation in the gas phase Nano Lett. 2013 13 2976 2979 10.1021/nl401568x 23701488 

  30. 30. Lee SW Intrinsic relation between hot electron flux and catalytic selectivity during methanol oxidation ACS Catal. 2019 9 8424 8432 10.1021/acscatal.9b02402 

  31. 31. Chen Z Understanding the dual active sites of the FeO/Pt (111) interface and reaction kinetics: density functional theory study on methanol oxidation to formaldehyde ACS Catal. 2017 7 4281 4290 10.1021/acscatal.7b00541 

  32. 32. Farnesi Camellone M Molecular understanding of reactivity and selectivity for methanol oxidation at the Au/TiO 2 interface Angew. Chem. Int. Ed. 2013 52 5780 5784 10.1002/anie.201301868 

  33. 33. Contreras A Yan X-M Kwon S Bokor J Somorjai G Catalytic CO oxidation reaction studies on lithographically fabricated platinum nanowire arrays with different oxide supports Catal. Lett. 2006 111 5 13 10.1007/s10562-006-0123-x 

  34. 34. Contreras A Grunes J Yan X-M Liddle A Somorjai G Fabrication of 2-dimensional platinum nanocatalyst arrays by electron beam lithography: ethylene hydrogenation and CO-poisoning reaction studies Top. Catal. 2006 39 123 129 10.1007/s11244-006-0047-0 

  35. 35. Kim JM Eliminating the trade­off between the throughput and pattern quality of sub­15 nm directed self­assembly via warm solvent annealing Adv. Funct. Mater. 2015 25 306 315 10.1002/adfm.201401529 

  36. 36. Jung YS Ross CA Orientation-controlled self-assembled nanolithography using a polystyrene?polydimethylsiloxane block copolymer Nano Lett. 2007 7 2046 2050 10.1021/nl070924l 17570733 

  37. 37. Goddeti KC Lee H Jeon B Park JY Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation Chem. Commun. 2018 54 8968 8971 10.1039/C8CC04288H 

  38. 38. Jeon B Lee H Goddeti KC Park JY Hot electron transport on three-dimensional Pt/mesoporous TiO 2 Schottky nanodiodes ACS Appl. Mater. Interfaces 2019 11 15152 15159 10.1021/acsami.9b02863 30939872 

  39. 39. Park JY Renzas J Hsu BB Somorjai GA Interfacial and chemical properties of Pt/TiO 2 , Pd/TiO 2 , and Pt/GaN catalytic nanodiodes influencing hot electron flow J. Phys. Chem. C 2007 111 15331 15336 10.1021/jp074562h 

  40. 40. Park JY Lee H Renzas JR Zhang Y Somorjai GA Probing hot electron flow generated on Pt nanoparticles with Au/TiO 2 Schottky diodes during catalytic CO oxidation Nano Lett. 2008 8 2388 2392 10.1021/nl8012456 18572970 

  41. 41. Lee H Graphene?semiconductor catalytic nanodiodes for quantitative detection of hot electrons induced by a chemical reaction Nano Lett. 2016 16 1650 1656 10.1021/acs.nanolett.5b04506 26910271 

  42. 42. Hervier A Baker LR Komvopoulos K Somorjai GA Titanium oxide/platinum catalysis: charge transfer from a titanium oxide support controls activity and selectivity in methanol oxidation on platinum J. Phys. Chem. C 2011 115 22960 22964 10.1021/jp2066327 

  43. 43. Yoon S Specific metal?support interactions between nanoparticle layers for catalysts with enhanced methanol oxidation activity ACS Catal. 2018 8 5394 5398 10.1021/acscatal.8b00276 

  44. 44. Xu M Insights into interfacial synergistic catalysis over Ni@TiO 2?x catalyst toward water?gas shift reaction J. Am. Chem. Soc. 2018 140 11241 11251 10.1021/jacs.8b03117 30016862 

  45. 45. Xu M TiO 2?x -modified Ni nanocatalyst with tunable metal?support interaction for water?gas shift reaction ACS Catal. 2017 7 7600 7609 10.1021/acscatal.7b01951 

  46. 46. Liu N Au δ? ?O v ?Ti 3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction ACS Catal. 2019 9 2707 2717 10.1021/acscatal.8b04913 

  47. 47. Hervier A Renzas JR Park JY Somorjai GA Hydrogen oxidation-driven hot electron flow detected by catalytic nanodiodes Nano Lett. 2009 9 3930 3933 10.1021/nl9023275 19731919 

  48. 48. Lee H Enhanced hot electron generation by inverse metal?oxide interfaces on catalytic nanodiode Faraday Dicuss. 2019 214 353 364 10.1039/C8FD00136G 

  49. 49. Lee H Boosting hot electron flux and catalytic activity at metal?oxide interfaces of PtCo bimetallic nanoparticles Nat. Commun. 2018 9 2235 10.1038/s41467-018-04713-8 29884825 

  50. 50. An K Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles J. Am. Chem. Soc. 2013 135 16689 16696 10.1021/ja4088743 24090187 

  51. 51. Baker LR Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid?base catalysis explains the molecular origin of strong metal?support interactions J. Am. Chem. Soc. 2012 134 14208 14216 10.1021/ja306079h 22871058 

  52. 52. Hanukovich S Dang A Christopher P Influence of metal oxide support acid sites on Cu-catalyzed nonoxidative dehydrogenation of ethanol to acetaldehyde ACS Catal. 2019 9 3537 3550 10.1021/acscatal.8b05075 

  53. 53. Yang, Z. -Y., Wojtaszek-Gurdak, A., Yang, C. -M. & Ziolek, M. Enhancement of selectivity in methanol oxidation over copper containing SBA-15 by doping with boron species. Catal. Today 356 , 122?131 (2020). 

  54. 54. Bunluesin T Putna E Gorte R A comparison of CO oxidation on ceria-supported Pt, Pd, and Rh Catal. Lett. 1996 41 1 5 10.1007/BF00811703 

  55. 55. Lee SW Song JT Kim J Oh J Park JY Enhanced catalytic activity for CO oxidation by the metal?oxide perimeter of TiO 2 /nanostructured Au inverse catalysts Nanoscale 2018 10 3911 3917 10.1039/C7NR08168E 29423473 

  56. 56. Qadir K Tailoring metal?oxide interfaces of inverse catalysts of TiO 2 /nanoporous-Au under hydrogen oxidation Chem. Commun. 2015 51 9620 9623 10.1039/C5CC02832A 

  57. 57. Kennedy G Melaet Grm Han H-L Ralston WT Somorjai GA In situ spectroscopic investigation into the active sites for crotonaldehyde hydrogenation at the Pt nanoparticle?Co 3 O 4 interface ACS Catal. 2016 6 7140 7147 10.1021/acscatal.6b01640 

  58. 58. Xu B Haubrich J Baker TA Kaxiras E Friend CM Theoretical study of O-assisted selective coupling of methanol on Au (111) J. Phys. Chem. C. 2011 115 3703 3708 10.1021/jp110835w 

  59. 59. Nørskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (Wiley, 2014). 

  60. 60. Kim J Adsorbate-driven reactive interfacial Pt-NiO 1?x nanostructure formation on the Pt 3 Ni (111) alloy surface Sci. Adv. 2018 4 eaat3151 10.1126/sciadv.aat3151 30027118 

  61. 61. Kresse G Furthmuller J Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 1996 6 15 50 10.1016/0927-0256(96)00008-0 

  62. 62. Perdew JP Burke K Ernzerhof M Generalized gradient approximation made simple Phys. Rev. Lett. 1996 77 3865 10.1103/PhysRevLett.77.3865 10062328 

  63. 63. Blochl PE Projector augmented-wave method Phys. Rev. B 1994 50 17953 10.1103/PhysRevB.50.17953 

  64. 64. Dudarev S Botton G Savrasov S Humphreys C Sutton A Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study Phys. Rev. B 1998 57 1505 10.1103/PhysRevB.57.1505 

  65. 65. Henkelman G Uberuaga BP Jonsson H A climbing image nudged elastic band method for finding saddle points and minimum energy paths J. Chem. Phys. 2000 113 9901 9904 10.1063/1.1329672 

  66. 66. Tang W Sanville E Henkelman G A grid-based Bader analysis algorithm without lattice bias J. Phys. Condens. Matter 2009 21 084204 10.1088/0953-8984/21/8/084204 21817356 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로