최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.12 no.1, 2021년, pp.40 -
Lee, Si Woo (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) , Kim, Jong Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) , Park, Woonghyeon (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) , Lee, Hyosun (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, 34141 Republic of Korea) , Lee, Gyu Rac (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) , Jung, Yousung (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) , Jung, Yeon Sik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) , Park, Jeong Young (Center for Nanomaterials and Chemi)
Interaction between metal and oxides is an important molecular-level factor that influences the selectivity of a desirable reaction. Therefore, designing a heterogeneous catalyst where metal-oxide interfaces are well-formed is important for understanding selectivity and surface electronic excitation...
1. Somorjai GA Frei H Park JY Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques J. Am. Chem. Soc. 2009 131 16589 16605 10.1021/ja9061954 19919130
2. Wodtke AM Electronically non-adiabatic influences in surface chemistry and dynamics Chem. Soc. Rev. 2016 45 3641 3657 10.1039/C6CS00078A 27152489
3. Park JY Kim SM Lee H Nedrygailov II Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity Acc. Chem. Res. 2015 48 2475 2483 10.1021/acs.accounts.5b00170 26181684
4. Somorjai GA Park JY Molecular factors of catalytic selectivity Angew. Chem. Int. Ed. 2008 47 9212 9228 10.1002/anie.200803181
5. Nienhaus H Electronic excitations by chemical reactions on metal surfaces Surf. Sci. Rep. 2002 45 1 78 10.1016/S0167-5729(01)00019-X
6. Hasselbrink E How non-adiabatic are surface dynamical processes? Curr. Opin. Solid State Mater. Sci. 2006 10 192 204 10.1016/j.cossms.2007.04.003
7. Wodtke AM Matsiev D Auerbach DJ Energy transfer and chemical dynamics at solid surfaces: the special role of charge transfer Prog. Surf. Sci. 2008 83 167 214 10.1016/j.progsurf.2008.02.001
8. Park JY Baker LR Somorjai GA Role of hot electrons and metal?oxide interfaces in surface chemistry and catalytic reactions Chem. Rev. 2015 115 2781 2817 10.1021/cr400311p 25791926
9. Gergen B Nienhaus H Weinberg WH McFarland EW Chemically induced electronic excitations at metal surfaces Science 2001 294 2521 2523 10.1126/science.1066134 11752571
10. Lee H Nedrygailov II Lee C Somorjai GA Park JY Chemicalreactioninduced hot electron flows on platinum colloid nanoparticles under hydrogen oxidation: impact of nanoparticle size Angew. Chem. Int. Ed. 2015 54 2340 2344 10.1002/anie.201410951
11. Karpov EG Nedrygailov I Nonadiabatic chemical-to-electrical energy conversion in heterojunction nanostructures Phys. Rev. B 2010 81 205443 10.1103/PhysRevB.81.205443
12. Hashemian M Palacios E Nedrygailov I Diesing D Karpov E Thermal properties of the stationary current in mesoporous Pt/TiO 2 structures in an oxyhydrogen atmosphere ACS Appl. Mater. Interfaces 2013 5 12375 12379 10.1021/am403182v 24256205
13. Diesing D Hasselbrink E Chemical energy dissipation at surfaces under UHV and high pressure conditions studied using metal?insulator?metal and similar devices Chem. Soc. Rev. 2016 45 3747 3755 10.1039/C5CS00932D 27186600
14. Nienhaus H Electron-hole pair creation at Ag and Cu surfaces by adsorption of atomic hydrogen and deuterium Phys. Rev. Lett. 1999 82 446 10.1103/PhysRevLett.82.446
15. Ro I Resasco J Christopher P Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts ACS Catal. 2018 8 7368 7387 10.1021/acscatal.8b02071
16. Sun YN The interplay between structure and CO oxidation catalysis on metalsupported ultrathin oxide films Angew. Chem. Int. Ed. 2010 49 4418 4421 10.1002/anie.201000437
17. Cargnello M Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts Science 2013 341 771 773 10.1126/science.1240148 23868919
18. Tauster S Fung S Garten RL Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide J. Am. Chem. Soc. 1978 100 170 175 10.1021/ja00469a029
19. Tauster S Fung S Baker R Horsley J Strong interactions in supported-metal catalysts Science 1981 211 1121 1125 10.1126/science.211.4487.1121 17755135
20. Matsubu JC Adsorbate-mediated strong metal?support interactions in oxide-supported Rh catalysts Nat. Chem. 2017 9 120 127 10.1038/nchem.2607 28282057
21. Green IX Tang W Neurock M Yates JT Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO 2 catalyst Science 2011 333 736 739 10.1126/science.1207272 21817048
22. Haruta M Kobayashi T Sano H Yamada N Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C Chem. Lett. 1987 16 405 408 10.1246/cl.1987.405
23. Ye R Zhao J Wickemeyer BB Toste FD Somorjai GA Foundations and strategies of the construction of hybrid catalysts for optimized performances Nat. Catal. 2018 1 318 325 10.1038/s41929-018-0052-2
24. Gross E Liu JH-C Toste FD Somorjai GA Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time Nat. Chem. 2012 4 947 952 10.1038/nchem.1465 23089871
25. Lee I Delbecq F Morales R Albiter MA Zaera F Tuning selectivity in catalysis by controlling particle shape Nat. Mater. 2009 8 132 138 10.1038/nmat2371 19151702
26. Wittstock A Zielasek V Biener J Friend C Baumer M Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature Science 2010 327 319 322 10.1126/science.1183591 20075249
27. Eren B Structure of the clean and oxygen-covered Cu (100) surface at room temperature in the presence of methanol vapor in the 10?200 mTorr pressure range J. Phys. Chem. B 2017 122 548 554 10.1021/acs.jpcb.7b04681 28749680
28. Zugic B Dynamic restructuring drives catalytic activity on nanoporous gold?silver alloy catalysts Nat. Mater. 2017 16 558 564 10.1038/nmat4824 27992418
29. Wang H Influence of size-induced oxidation state of platinum nanoparticles on selectivity and activity in catalytic methanol oxidation in the gas phase Nano Lett. 2013 13 2976 2979 10.1021/nl401568x 23701488
30. Lee SW Intrinsic relation between hot electron flux and catalytic selectivity during methanol oxidation ACS Catal. 2019 9 8424 8432 10.1021/acscatal.9b02402
31. Chen Z Understanding the dual active sites of the FeO/Pt (111) interface and reaction kinetics: density functional theory study on methanol oxidation to formaldehyde ACS Catal. 2017 7 4281 4290 10.1021/acscatal.7b00541
32. Farnesi Camellone M Molecular understanding of reactivity and selectivity for methanol oxidation at the Au/TiO 2 interface Angew. Chem. Int. Ed. 2013 52 5780 5784 10.1002/anie.201301868
33. Contreras A Yan X-M Kwon S Bokor J Somorjai G Catalytic CO oxidation reaction studies on lithographically fabricated platinum nanowire arrays with different oxide supports Catal. Lett. 2006 111 5 13 10.1007/s10562-006-0123-x
34. Contreras A Grunes J Yan X-M Liddle A Somorjai G Fabrication of 2-dimensional platinum nanocatalyst arrays by electron beam lithography: ethylene hydrogenation and CO-poisoning reaction studies Top. Catal. 2006 39 123 129 10.1007/s11244-006-0047-0
35. Kim JM Eliminating the tradeoff between the throughput and pattern quality of sub15 nm directed selfassembly via warm solvent annealing Adv. Funct. Mater. 2015 25 306 315 10.1002/adfm.201401529
36. Jung YS Ross CA Orientation-controlled self-assembled nanolithography using a polystyrene?polydimethylsiloxane block copolymer Nano Lett. 2007 7 2046 2050 10.1021/nl070924l 17570733
37. Goddeti KC Lee H Jeon B Park JY Enhancing hot electron collection with nanotube-based three-dimensional catalytic nanodiode under hydrogen oxidation Chem. Commun. 2018 54 8968 8971 10.1039/C8CC04288H
38. Jeon B Lee H Goddeti KC Park JY Hot electron transport on three-dimensional Pt/mesoporous TiO 2 Schottky nanodiodes ACS Appl. Mater. Interfaces 2019 11 15152 15159 10.1021/acsami.9b02863 30939872
39. Park JY Renzas J Hsu BB Somorjai GA Interfacial and chemical properties of Pt/TiO 2 , Pd/TiO 2 , and Pt/GaN catalytic nanodiodes influencing hot electron flow J. Phys. Chem. C 2007 111 15331 15336 10.1021/jp074562h
40. Park JY Lee H Renzas JR Zhang Y Somorjai GA Probing hot electron flow generated on Pt nanoparticles with Au/TiO 2 Schottky diodes during catalytic CO oxidation Nano Lett. 2008 8 2388 2392 10.1021/nl8012456 18572970
41. Lee H Graphene?semiconductor catalytic nanodiodes for quantitative detection of hot electrons induced by a chemical reaction Nano Lett. 2016 16 1650 1656 10.1021/acs.nanolett.5b04506 26910271
42. Hervier A Baker LR Komvopoulos K Somorjai GA Titanium oxide/platinum catalysis: charge transfer from a titanium oxide support controls activity and selectivity in methanol oxidation on platinum J. Phys. Chem. C 2011 115 22960 22964 10.1021/jp2066327
43. Yoon S Specific metal?support interactions between nanoparticle layers for catalysts with enhanced methanol oxidation activity ACS Catal. 2018 8 5394 5398 10.1021/acscatal.8b00276
44. Xu M Insights into interfacial synergistic catalysis over Ni@TiO 2?x catalyst toward water?gas shift reaction J. Am. Chem. Soc. 2018 140 11241 11251 10.1021/jacs.8b03117 30016862
45. Xu M TiO 2?x -modified Ni nanocatalyst with tunable metal?support interaction for water?gas shift reaction ACS Catal. 2017 7 7600 7609 10.1021/acscatal.7b01951
46. Liu N Au δ? ?O v ?Ti 3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction ACS Catal. 2019 9 2707 2717 10.1021/acscatal.8b04913
47. Hervier A Renzas JR Park JY Somorjai GA Hydrogen oxidation-driven hot electron flow detected by catalytic nanodiodes Nano Lett. 2009 9 3930 3933 10.1021/nl9023275 19731919
48. Lee H Enhanced hot electron generation by inverse metal?oxide interfaces on catalytic nanodiode Faraday Dicuss. 2019 214 353 364 10.1039/C8FD00136G
49. Lee H Boosting hot electron flux and catalytic activity at metal?oxide interfaces of PtCo bimetallic nanoparticles Nat. Commun. 2018 9 2235 10.1038/s41467-018-04713-8 29884825
50. An K Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles J. Am. Chem. Soc. 2013 135 16689 16696 10.1021/ja4088743 24090187
51. Baker LR Furfuraldehyde hydrogenation on titanium oxide-supported platinum nanoparticles studied by sum frequency generation vibrational spectroscopy: acid?base catalysis explains the molecular origin of strong metal?support interactions J. Am. Chem. Soc. 2012 134 14208 14216 10.1021/ja306079h 22871058
52. Hanukovich S Dang A Christopher P Influence of metal oxide support acid sites on Cu-catalyzed nonoxidative dehydrogenation of ethanol to acetaldehyde ACS Catal. 2019 9 3537 3550 10.1021/acscatal.8b05075
53. Yang, Z. -Y., Wojtaszek-Gurdak, A., Yang, C. -M. & Ziolek, M. Enhancement of selectivity in methanol oxidation over copper containing SBA-15 by doping with boron species. Catal. Today 356 , 122?131 (2020).
54. Bunluesin T Putna E Gorte R A comparison of CO oxidation on ceria-supported Pt, Pd, and Rh Catal. Lett. 1996 41 1 5 10.1007/BF00811703
55. Lee SW Song JT Kim J Oh J Park JY Enhanced catalytic activity for CO oxidation by the metal?oxide perimeter of TiO 2 /nanostructured Au inverse catalysts Nanoscale 2018 10 3911 3917 10.1039/C7NR08168E 29423473
56. Qadir K Tailoring metal?oxide interfaces of inverse catalysts of TiO 2 /nanoporous-Au under hydrogen oxidation Chem. Commun. 2015 51 9620 9623 10.1039/C5CC02832A
57. Kennedy G Melaet Grm Han H-L Ralston WT Somorjai GA In situ spectroscopic investigation into the active sites for crotonaldehyde hydrogenation at the Pt nanoparticle?Co 3 O 4 interface ACS Catal. 2016 6 7140 7147 10.1021/acscatal.6b01640
58. Xu B Haubrich J Baker TA Kaxiras E Friend CM Theoretical study of O-assisted selective coupling of methanol on Au (111) J. Phys. Chem. C. 2011 115 3703 3708 10.1021/jp110835w
59. Nørskov, J. K., Studt, F., Abild-Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (Wiley, 2014).
60. Kim J Adsorbate-driven reactive interfacial Pt-NiO 1?x nanostructure formation on the Pt 3 Ni (111) alloy surface Sci. Adv. 2018 4 eaat3151 10.1126/sciadv.aat3151 30027118
61. Kresse G Furthmuller J Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mater. Sci. 1996 6 15 50 10.1016/0927-0256(96)00008-0
62. Perdew JP Burke K Ernzerhof M Generalized gradient approximation made simple Phys. Rev. Lett. 1996 77 3865 10.1103/PhysRevLett.77.3865 10062328
63. Blochl PE Projector augmented-wave method Phys. Rev. B 1994 50 17953 10.1103/PhysRevB.50.17953
64. Dudarev S Botton G Savrasov S Humphreys C Sutton A Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study Phys. Rev. B 1998 57 1505 10.1103/PhysRevB.57.1505
65. Henkelman G Uberuaga BP Jonsson H A climbing image nudged elastic band method for finding saddle points and minimum energy paths J. Chem. Phys. 2000 113 9901 9904 10.1063/1.1329672
66. Tang W Sanville E Henkelman G A grid-based Bader analysis algorithm without lattice bias J. Phys. Condens. Matter 2009 21 084204 10.1088/0953-8984/21/8/084204 21817356
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.