$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Spread spectrum SERS allows label-free detection of attomolar neurotransmitters 원문보기

Nature communications, v.12 no.1, 2021년, pp.159 -   

Lee, Wonkyoung (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea) ,  Kang, Byoung-Hoon (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea) ,  Yang, Hyunwoo (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea) ,  Park, Moonseong (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea) ,  Kwak, Ji Hyun (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea) ,  Chung, Taerin (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea) ,  Jeong, Yong (Department) ,  Kim, Bong Kyu ,  Jeong, Ki-Hun

Abstract AI-Helper 아이콘AI-Helper

The quantitative label-free detection of neurotransmitters provides critical clues in understanding neurological functions or disorders. However, the identification of neurotransmitters remains challenging for surface-enhanced Raman spectroscopy (SERS) due to the presence of noise. Here, we report s...

참고문헌 (46)

  1. 1. Lian TH An investigation on the clinical features and neurochemical changes in Parkinson’s disease with depression Front. Psychiatry 2018 9 723 10.3389/fpsyt.2018.00723 30713507 

  2. 2. Hacohen Y Fetal acetylcholine receptor inactivation syndrome: a myopathy due to maternal antibodies Neurol. Neuroimmunol. Neuroinflamm. 2015 2 e57 10.1212/NXI.0000000000000057 25566546 

  3. 3. Kessler H Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer’s disease J. Neural Transm. 2006 113 1763 1769 10.1007/s00702-006-0485-7 16736242 

  4. 4. Madeira C Elevated glutamate and glutamine levels in the cerebrospinal fluid of patients with probable Alzheimer’s disease and depression Front. Psychiatry 2018 9 561 10.3389/fpsyt.2018.00561 30459657 

  5. 5. Goran Šimic MBL Monoaminergic neuropathology in Alzheimer’s disease Prog. Neurobiol. 2017 151 101 138 10.1016/j.pneurobio.2016.04.001 27084356 

  6. 6. Iadecola C Neurovascular regulation in the normal brain and in Alzheimer’s disease Nat. Rev. Neurosci. 2004 5 347 360 10.1038/nrn1387 15100718 

  7. 7. Yunqi X Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease Prog. Neurobiol. 2012 97 1 13 10.1016/j.pneurobio.2012.02.002 22387368 

  8. 8. Damier P Hirsch SC Agid Y Graybiel AM The substantia nigra of the human brain II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease Brain 1999 122 1437 1448 10.1093/brain/122.8.1437 10430830 

  9. 9. Bezard E Gross CE Brotchie JM Presymptomatic compensation in Parkinson’s disease is not dopamine-mediated Trends Neurosci. 2003 26 215 221 10.1016/S0166-2236(03)00038-9 12689773 

  10. 10. Sawa A Snyder SH Schizophrenia: diverse approaches to a complex disease Science 2002 296 692 695 10.1126/science.1070532 11976442 

  11. 11. Maltezos S Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study Transl. Psychiatry 2014 4 e373 10.1038/tp.2014.11 24643164 

  12. 12. Cha JH Altered brain neurotransmitter receptors in transgenic mice expressing a portion of an abnormal human Huntington disease gene Proc. Natl Acad. Sci. USA 1998 95 6480 6485 10.1073/pnas.95.11.6480 9600992 

  13. 13. Laviolette SR van der Kooy D The neurobiology of nicotine addiction: bridging the gap from molecules to behaviour Nat. Rev. Neurosci. 2004 5 55 65 10.1038/nrn1298 14708004 

  14. 14. Husain M Roiser JP Neuroscience of apathy and anhedonia: a transdiagnostic approach Nat. Rev. Neurosci. 2018 19 470 484 10.1038/s41583-018-0029-9 29946157 

  15. 15. Francis PT Palmer AM Snape M Wilcock GK The cholinergic hypothesis of Alzheimer’s disease: a review of progress J. Neurol. Neurosurg. Psychiatry 1999 66 137 147 10.1136/jnnp.66.2.137 10071091 

  16. 16. Strac DS Muck-Seler D Pivac N Neurotransmitter measures in the cerebrospinal fluid of patients with Alzheimer’s disease: a review Psychiatr. Danubina 2015 27 14 24 

  17. 17. Strickland PL Bio-social origins of depression in the community Br. J. Psychiatry 2002 180 168 173 10.1192/bjp.180.2.168 11823330 

  18. 18. Sethuraman R Lee TL Tachibana S Simple quantitative HPLC method for measuring physiologic amino acids in cerebrospinal fluid without pretreatment Clin. Chem. 2004 50 665 669 10.1373/clinchem.2003.026195 14981041 

  19. 19. Zapata A Chefer VI Shippenberg TS Denoroy L Detection and quantification of neurotransmitters in dialysates Curr. Protoc. Neurosci. 2009 Chapter 7 unit 7 4 1 30 19340812 

  20. 20. Bo Si ES Recent advances in the detection of neurotransmitters Chemosensors 2018 6 1 10.3390/chemosensors6010001 

  21. 21. Griffin WC III Middaugh LD Becker HC Voluntary ethanol drinking in mice and ethanol concentrations in the nucleus accumbens Brain Res. 2007 1138 208 213 10.1016/j.brainres.2006.12.071 17275791 

  22. 22. Lanckmans K Eeckhaut AV Sarre S Smolders I Michotte Y Capillary and nano-liquid chromatography–tandem mass spectrometry for the quantification of small molecules in microdialysis samples: comparison with microbore dimensions J. Chromatogr. A 2006 1131 166 175 10.1016/j.chroma.2006.07.090 16938304 

  23. 23. McKenzie JAM Automated capillary liquid chromatography for simultaneous determination of neuroactive amines and amino acids J. Chromatogr. A 2002 962 105 115 10.1016/S0021-9673(02)00533-2 12198955 

  24. 24. Lada MW Kennedy RT Quantitative in vivo monitoring of primary amines in rat caudate nucleus using microdialysis coupled by a flow-gated interface to capillary electrophoresis with laser-induced fluorescence detection Anal. Chem. 1996 68 2790 2797 10.1021/ac960178x 8794915 

  25. 25. Nagavi JB Gurupadayya B Sirisha T Neligare Gopalakrishna R Bio-analytical UFLC method development and validation for simultaneous estimation of clopidogrel and pantoprazole in human plasma Int. J. Pharm. Sci. Rev. Res. 2014 27 157 162 

  26. 26. Ashley MJ Shape and size control of substrate-grown gold nanoparticles for surface-enhanced raman spectroscopy detection of chemical analytes J. Phys. Chem. C 2018 122 2307 2314 10.1021/acs.jpcc.7b11440 

  27. 27. Moody AS Sharma B Multi-metal, multi-wavelength surface-enhanced Raman spectroscopy detection of neurotransmitters ACS Chem. Neurosci. 2018 9 1380 1387 10.1021/acschemneuro.8b00020 29601719 

  28. 28. Hernández B Houze P Pflüger F Kruglik SC Ghomi M Raman scattering-based multiconformational analysis for probing the structural differences between acetylcholine and acetylthiocholine J. Pharm. Biomed. Anal. 2017 138 54 62 10.1016/j.jpba.2017.01.049 28182991 

  29. 29. Qiu C Ultrasensitive detection of neurotransmitters by surface enhanced Raman spectroscopy for biosensing applications Biointerface Res. Appl. Chem. 2017 7 1921 1926 

  30. 30. Lussier F Dynamic SERS nanosensor for neurotransmitter sensing near neurons Faraday Discuss. 2017 205 387 407 10.1039/C7FD00131B 28895964 

  31. 31. Siek M Electrodeposition for preparation of efficient surface-enhanced Raman scattering-active silver nanoparticle substrates for neurotransmitter detection Electrochim. Acta 2013 89 284 291 10.1016/j.electacta.2012.11.037 

  32. 32. Chung T Koker T Pinaud F Split-GFP: SERS enhancers in plasmonic nanocluster probes Small 2016 12 5891 5901 10.1002/smll.201601631 27608276 

  33. 33. Oh Y-J Jeong K-H Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering Adv. Mater. 2012 24 2234 2237 10.1002/adma.201104696 22454295 

  34. 34. Kleinman SL Creating, characterizing, and controlling chemistry with SERS hot spots Phys. Chem. Chem. Phys. 2013 15 21 36 10.1039/C2CP42598J 23042160 

  35. 35. Shuming Nie SRE Probing single molecules and single nanoparticles by surface-enhanced Raman scattering Science 1997 275 1102 1106 10.1126/science.275.5303.1102 9027306 

  36. 36. Kneipp K Single molecule detection using surface-enhanced Raman scattering (SERS) Phys. Rev. Lett. 1997 78 1667 1670 10.1103/PhysRevLett.78.1667 

  37. 37. Leger MN Ryder AG Comparison of derivative preprocessing and automated polynomial baseline correction method for classification and quantification of narcotics in solid mixtures Appl. Spectrosc. 2006 60 182 193 10.1366/000370206776023304 16542570 

  38. 38. Hasegawa T Nishijo J Umemura J Separation of Raman spectra from fluorescence emission background by principal component analysis Chem. Phys. Lett. 2000 317 642 646 10.1016/S0009-2614(99)01427-X 

  39. 39. Fotso Gueutue ES Nanosecond time resolved Raman spectroscopy for solving some Raman problems such as luminescence or thermal emission J. Raman Spectrosc. 2018 49 822 829 10.1002/jrs.5345 

  40. 40. Praveen BB Steuwe C Mazilu M Dolakia K Mahajan S Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection Analyst 2013 138 2816 2820 10.1039/c3an00043e 23562981 

  41. 41. Cadusch PJ Hlaing MM Wade SA McArthur SL Stoddart PR Improved methods for fluorescence background subtraction from Raman spectra J. Raman Spectrosc. 2012 44 1587 1595 10.1002/jrs.4371 

  42. 42. Camerlingo C Zenone F Gaeta GM Riccio R Lepore M Wavelet data processing of micro-Raman spectra of biological samples Meas. Sci. Technol. 2006 17 298 303 10.1088/0957-0233/17/2/010 

  43. 43. Tamang ND Sur SN Bera S Bera R A review on spread spectrum radar Adv. Electron. Commun. Comput. 2018 443 653 664 10.1007/978-981-10-4765-7_68 

  44. 44. Olama, M. M., Xiao, M., Kuruganti, T. P., Smith, S. F. & Djouadi, S. M. Hybrid DS/FFH spread-spectrum: a robust, secure transmission technique for communication in harsh environments. Proceedings of the Military Communications Conference , 2136–2141 (2011). 

  45. 45. Mosier-Boss PA Lieberman SH Newbery R Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques Appl. Spectrosc. 1995 49 630 638 10.1366/0003702953964039 

  46. 46. Park M Kang B-H Jeong K-H Paper-based biochip assays and recent developments: a review BioChip J. 2018 12 1 10 10.1007/s13206-017-2101-3 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로