최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature communications, v.12 no.1, 2021년, pp.173 -
Kim, Dong In (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) , Chae, Tong Un (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) , Kim, Hyun Uk (Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141 Republic of Korea) , Jang, Woo Dae (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea) , Lee, Sang Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engine)
Bio-based production of many chemicals is not yet possible due to the unknown biosynthetic pathways. Here, we report a strategy combining retrobiosynthesis and precursor selection step to design biosynthetic pathways for multiple short-chain primary amines (SCPAs) that have a wide range of applicati...
1. Lee SY A comprehensive metabolic map for production of bio-based chemicals Nat. Catal. 2019 2 18 33 10.1038/s41929-018-0212-4
2. Jullesson D David F Pfleger B Nielsen J Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals Biotechnol. Adv. 2015 33 1395 1402 10.1016/j.biotechadv.2015.02.011 25728067
3. Atsumi S Hanai T Liao JC Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels Nature 2008 451 86 89 10.1038/nature06450 18172501
4. Dellomonaco C Clomburg JM Miller EN Gonzalez R Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals Nature 2011 476 355 359 10.1038/nature10333 21832992
5. Cheong S Clomburg JM Gonzalez R Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions Nat. Biotechnol. 2016 34 556 561 10.1038/nbt.3505 27088721
6. Rodriguez GM Tashiro Y Atsumi S Expanding ester biosynthesis in Escherichia coli Nat. Chem. Biol. 2014 10 259 265 10.1038/nchembio.1476 24609358
7. Chae TU Ko YS Hwang KS Lee SY Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams Metab. Eng. 2017 41 82 91 10.1016/j.ymben.2017.04.001 28390749
8. Zhang J Application of an acyl-CoA ligase from Streptomyces aizunensis for lactam biosynthesis ACS Synth. Biol. 2017 6 884 890 10.1021/acssynbio.6b00372 28414905
9. Gross T Seayad AM Ahmad M Beller M Synthesis of primary amines: First homogeneously catalyzed reductive amination with ammonia Org. Lett. 2002 4 2055 2058 10.1021/ol0200605 12049516
10. Gunanathan C Milstein D Selective synthesis of primary amines directly from alcohols and ammonia Angew. Chem. Int. Ed. 2008 47 8661 8664 10.1002/anie.200803229
11. Koszelewski D Tauber K Faber K Kroutil W ω-Transaminases for the synthesis of non-racemic α-chiral primary amines Trends Biotechnol. 2010 28 324 332 10.1016/j.tibtech.2010.03.003 20430457
12. Peter, R., Karsten, E., Erhard, H., Roland, R. & Hartmut, H. in Amines, Aliphatic . Ullmann’s Encylopedia of Industrial Chemistry (ed. Barbara, E.) 1–50 (Wiley-VCH, Weinheim, 2015).
13. Pickl M Fuchs M Glueck SM Faber K Amination of ω-functionalized aliphatic primary alcohols by a biocatalytic oxidation-transamination cascade ChemCatChem 2015 7 3121 3124 10.1002/cctc.201500589 26583050
14. Citoler J Derrington SR Galman JL Bevinakatti H Turner NJ A biocatalytic cascade for the conversion of fatty acids to fatty amines Green. Chem. 2019 21 4932 4935 10.1039/C9GC02260K
15. Hadadi N Hatzimanikatis V Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways Curr. Opin. Chem. Biol. 2015 28 99 104 10.1016/j.cbpa.2015.06.025 26177079
16. Yang X Systematic design and in vitro validation of novel one-carbon assimilation pathways Metab. Eng. 2019 56 142 153 10.1016/j.ymben.2019.09.001 31491544
17. Yim H Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol Nat. Chem. Biol. 2011 7 445 452 10.1038/nchembio.580 21602812
18. Feher T Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering Biotechnol. J. 2014 9 1446 1457 10.1002/biot.201400055 25224453
19. Ren J An unnatural pathway for efficient 5-aminolevulinic acid biosynthesis with glycine from glyoxylate based on retrobiosynthetic design ACS Synth. Biol. 2018 7 2750 2757 10.1021/acssynbio.8b00354 30476433
20. Cho A Yun H Park JH Lee SY Park S Prediction of novel synthetic pathways for the production of desired chemicals BMC Syst. Biol. 2010 4 35 10.1186/1752-0509-4-35 20346180
21. Park JH Lee KH Kim TY Lee SY Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation Proc. Natl Acad. Sci. USA 2007 104 7797 7802 10.1073/pnas.0702609104 17463081
22. Wendisch, V. F. Metabolic engineering advances and prospects for amino acid production. Metab. Eng ., in-press (2019).
23. Choi YJ Lee SY Microbial production of short-chain alkanes Nature 2013 502 571 574 10.1038/nature12536 24077097
24. Sheppard MJ Kunjapur AM Prather KLJ Modular and selective biosynthesis of gasoline-range alkanes Metab. Eng. 2016 33 28 40 10.1016/j.ymben.2015.10.010 26556131
25. McMurry, J. & Begley, T. P. The Organic Chemistry of Biological Pathways (Roberts and Company Publishers, 2005).
26. Bond-Watts BB Bellerose RJ Chang MCY Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways Nat. Chem. Biol. 2011 7 222 227 10.1038/nchembio.537 21358636
27. Huo YX Conversion of proteins into biofuels by engineering nitrogen flux Nat. Biotechnol. 2011 29 346 351 10.1038/nbt.1789 21378968
28. Garg RP Ma Y Hoyt JC Parry RJ Molecular characterization and analysis of the biosynthetic gene cluster for the azoxy antibiotic valanimycin Mol. Microbiol 2002 46 505 517 10.1046/j.1365-2958.2002.03169.x 12406225
29. Fukui K Role of frontier orbitals in chemical-reactions Science 1982 218 747 754 10.1126/science.218.4574.747 17771019
30. Gohlke H Klebe G Approaches to the description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors Angew. Chem. Int. Ed. 2002 41 2645 2676 10.1002/1521-3773(20020802)41:15<2644::AID-ANIE2644>3.0.CO;2-O
31. Zhang, X., Jantama, K., Moore, J. C., Shanmugam, K. T. & Ingram, L. O. Production of L-alanine by metabolically engineered Escherichia coli . Appl. Microbiol. Biotechnol . 77 , 355–366 (2007).
32. Na D Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs Nat. Biotechnol. 2013 31 170 174 10.1038/nbt.2461 23334451
33. Fenalti G GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop Nat. Struct. Mol. Biol. 2007 14 280 286 10.1038/nsmb1228 17384644
34. Kanehisa M Furumichi M Tanabe M Sato Y Morishima K KEGG: new perspectives on genomes, pathways, diseases and drugs Nucleic Acids Res. 2017 45 D353 D361 10.1093/nar/gkw1092 27899662
35. Pirok G Making “real” molecules in virtual space J. Chem. Inf. Model 2006 46 563 568 10.1021/ci050373p 16562984
36. Kim S PubChem 2019 update: improved access to chemical data Nucleic Acids Res. 2019 47 D1102 D1109 10.1093/nar/gky1033 30371825
37. Rahman SA Reaction Decoder Tool (RDT): extracting features from chemical reactions Bioinformatics 2016 32 2065 2066 10.1093/bioinformatics/btw096 27153692
38. Sambrook, J. & Russell, D. W. Molecular Cloning: A Laboratory Manual 3rd edn (Cold Spring Harbor Lab Press, 2001).
39. Gibson DG Enzymatic assembly of DNA molecules up to several hundred kilobases Nat. Methods 2009 6 343 345 10.1038/nmeth.1318 19363495
40. Lee Y Lee SY Enhanced production of poly(3-hydroxybutyrate) by filamentation-suppressed recombinant Escherichia coli in a defined medium J. Environ. Polym. Degr. 1996 4 131 134 10.1007/BF02074874
41. Önal A A review: Current analytical methods for the determination of biogenic amines in foods Food Chem. 2007 103 1475 1486 10.1016/j.foodchem.2006.08.028
42. Yildirim HK Uren A Yucel U Evaluation of biogenic amines in organic and non-organic wines by HPLC OPA derivatization Food Technol. Biotechnol. 2007 45 62 68
43. Waterhouse A SWISS-MODEL: homology modelling of protein structures and complexes Nucleic Acids Res. 2018 46 W296 W303 10.1093/nar/gky427 29788355
44. Trott O Olson AJ AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading J. Comput. Chem. 2010 31 455 461 19499576
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.