$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Overexpression of the Golden SNP-Carrying Orange Gene Enhances Carotenoid Accumulation and Heat Stress Tolerance in Sweetpotato Plants 원문보기

Antioxidants, v.10 no.1, 2021년, pp.51 -   

Kim, So-Eun (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea) ,  Lee, Chan-Ju (sonic0312@kribb.re.kr (S.-E.K.)) ,  Park, Sul-U (moda22@kribb.re.kr (C.-J.L.)) ,  Lim, Ye-Hoon (sulu0849@kribb.re.kr (S.-U.P.)) ,  Park, Woo Sung (lim0916@kribb.re.kr (Y.-H.L.)) ,  Kim, Hye-Jin (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon 34141, Korea) ,  Ahn, Mi-Jeong (sonic0312@kribb.re.kr (S.-E.K.)) ,  Kwak, Sang-Soo (moda22@kribb.re.kr (C.-J.L.)) ,  Kim, Ho Soo (sulu0849@kribb.re.kr (S.-U.P.))

Abstract AI-Helper 아이콘AI-Helper

Carotenoids function as photosynthetic accessory pigments, antioxidants, and vitamin A precursors. We recently showed that transgenic sweetpotato calli overexpressing the mutant sweetpotato (Ipomoea batatas [L.] Lam) Orange gene (IbOr-R96H), which carries a single nucleotide polymorphism responsible...

Keyword

참고문헌 (52)

  1. 1. Yabuzaki J. Carotenoids database: Structures, chemical fingerprints and distribution among organisms Database 2017 2017 10.1093/database/bax004 28365725 

  2. 2. Stanley L. Yuan Y.W. Transcriptional regulation of carotenoid biosynthesis in plants: So many regulators, so little consensus Front. Plant Sci. 2019 10 1017 10.3389/fpls.2019.01017 31447877 

  3. 3. Watkins J.L. Pogson B.J. Prospects for carotenoid biofortification targeting retention and catabolism Trends Plant Sci. 2020 25 501 512 10.1016/j.tplants.2019.12.021 31956035 

  4. 4. Zheng X. Giuliano G. Al-Babili S. Carotenoid biofortification in crop plants: Citius , altius , fortius Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020 1865 158664 10.1016/j.bbalip.2020.158664 32068105 

  5. 5. Hashimoto H. Uragami C. Cogdell R.J. Carotenoids and photosynthesis Subcell. Biochem. 2016 79 111 139 27485220 

  6. 6. Black R.E. Allen L.H. A Bhutta Z. E Caulfield L. De Onis M. Ezzati M. Mathers C. Rivera J. Maternal and child undernutrition: Global and regional exposures and health consequences Lancet 2008 371 243 260 10.1016/S0140-6736(07)61690-0 18207566 

  7. 7. Fraser P.D. Bramley P.M. The biosynthesis and nutritional uses of carotenoids Prog. Lipid Res. 2004 43 228 265 10.1016/j.plipres.2003.10.002 15003396 

  8. 8. Giuliano G. Provitamin A biofortification of crop plants: A gold rush with many miners Curr. Opin. Biotechnol. 2017 44 169 180 10.1016/j.copbio.2017.02.001 28254681 

  9. 9. Yuan H. Zhang J. Nageswaran D. Li L. Carotenoid metabolism and regulation in horticultural crops Hortic. Res. 2015 2 15036 10.1038/hortres.2015.36 26504578 

  10. 10. Bovell-Benjamin A.C. Sweetpotato: A review of its past, present, and future role in human nutrition Adv. Food Nutr. Res. 2007 52 1 59 17425943 

  11. 11. Kwak S.S. Biotechnology of sweetpotato: Ensuring the food and nutrition security in the face of climate change Plant Cell Rep. 2019 38 1361 1363 10.1007/s00299-019-02468-0 31494727 

  12. 12. Paine J.A. Shipton A.C. Chaggar S. Howells R.M. Kennedy M.J. Vernon G. Wright S.Y. Hinchliffe E. Adams J.L. Silverstone A.L. Improving the nutritional value of Golden Rice through increased pro-vitamin A content Nat. Biotechnol. 2005 23 482 487 10.1038/nbt1082 15793573 

  13. 13. Kang L. Park S.C. Ji C.Y. Kim H.S. Lee H.S. Kwak S.S. Metabolic engineering of carotenoids in transgenic sweetpotato Breed. Sci. 2017 67 27 34 10.1270/jsbbs.16118 28465665 

  14. 14. Kim H.S. Wang W. Kang L. Kim S.E. Lee C.J. Park S.C. Park W.S. Ahn M.J. Kwak S.S. Metabolic engineering of low molecular weight antioxidants in sweetpotao Plant Biotechnol. Rep. 2020 14 193 205 10.1007/s11816-020-00621-w 

  15. 15. Mohanraj R. Sivasankar S. Sweet potato ( Ipomoea batatas [L.] Lam)—A valuable medicinal food: A review J. Med. Food 2014 17 733 741 10.1089/jmf.2013.2818 24921903 

  16. 16. Liu Q. Improvement for agronomically important traits by gene engineering in sweetpotato Breed. Sci. 2017 67 15 26 10.1270/jsbbs.16126 28465664 

  17. 17. Lu S. Van Eck J. Zhou X. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation Plant Cell 2006 18 3594 3605 10.1105/tpc.106.046417 17172359 

  18. 18. Tzuri G. Zhou X. Chayut N. Yuan H. Portnoy V. Meir A. A ‘golden’ SNP in CmOr governs the fruit flesh color of melon ( Cucumis melo ) Plant J. 2015 82 267 279 10.1111/tpj.12814 25754094 

  19. 19. Chayut N. Yuan H. Ohali S. Meir A. Sa’Ar U. Tzuri G. Zheng Y. Mazourek M. Gepstein S. Zhou X. Distinct mechanisms of the ORANGE protein in controlling carotenoid flux Plant Physiol. 2017 173 376 389 10.1104/pp.16.01256 27837090 

  20. 20. Lopez A.B. Van Eck J. Conlin B.J. Paolillo D.J. O’Neill J. Li L. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers J. Exp. Bot. 2008 59 213 223 10.1093/jxb/erm299 18256051 

  21. 21. Zhou X. Welsch R. Yang Y. Álvarez D. Riediger M. Yuan H. Fish T. Liu J. Thannhauser T.W. Li L. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis Proc. Natl. Acad. Sci. USA 2015 112 3558 3563 10.1073/pnas.1420831112 25675505 

  22. 22. Yuan H. Owsiany K. Sheeja T. Zhou X. Rodriguez C. Li Y. Welsch R. Chayut N. Yang Y. Thannhauser T.W. A single amino acid substitution in an ORANGE protein promotes carotenoid overaccumulation in Arabidopsis Plant Physiol. 2015 169 421 431 10.1104/pp.15.00971 26224804 

  23. 23. Park S.C. Kim S.H. Park S. Lee H.U. Lee J.S. Park W.S. Ahn M.J. Kim Y.H. Jeong J.C. Lee H.S. Enhanced accumulation of carotenoids in sweetpotato plants overexpressing IbOr-Ins gene in purple-fleshed sweetpotato cultivar Plant Physiol. Biochem. 2015 86 82 90 10.1016/j.plaphy.2014.11.017 25438140 

  24. 24. Wang Z. Ke Q. Kim M.D. Kim S.H. Ji C.Y. Jeong J.C. Lee H.S. Park W.S. Ahn M.J. Li H. Transgenic alfalfa plants expressing the sweetpotato Orange gene exhibit enhanced abiotic stress tolerance PLoS ONE 2015 10 e0126050 10.1371/journal.pone.0126050 25946429 

  25. 25. Kim H.S. Ji C.Y. Lee C.J. Kim S.E. Park S.C. Kwak S.S. Orange : A target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands J. Exp. Bot. 2018 69 3393 3400 10.1093/jxb/ery023 29385615 

  26. 26. Park S. Kim H.S. Jung Y.J. Kim S.H. Ji C.Y. Wang Z. Jeong J.C. Lee H.S. Lee S.Y. Kwak S.S. Orange protein has a role in phytoene synthase stabilization in sweetpotato Sci. Rep. 2016 6 33563 10.1038/srep33563 27633588 

  27. 27. Kang L. Kim H.S. Kwon Y.S. Ke Q. Ji C.Y. Park S.C. Lee H.S. Deng X. Kwak S.S. IbOr regulates photosynthesis under heat stress by stabilizing IbPsbP in sweetpotato Front. Plant Sci. 2017 8 989 10.3389/fpls.2017.00989 28642783 

  28. 28. Park S.C. Kang L. Park W.S. Ahn M.J. Kwak S.S. Kim H.S. Carotenoid cleavage dioxygenase 4 (CCD4) cleaves β-carotene and interacts with IbOr in sweetpotato Plant Biotechnol. Rep. 2020 14 737 742 10.1007/s11816-020-00649-y 

  29. 29. Yazdani M. Sun Z. Yuan H. Zeng S. Thannhauser T.W. Vrebalov J. Ma Q. Xu Y. Fei Z. Van Eck J. Ectopic expression of ORANGE promotes carotenoid accumulation and fruit development in tomato Plant Biotechnol. J. 2018 17 33 49 10.1111/pbi.12945 29729208 

  30. 30. Ellison S.L. Luby C.H. Corak K.E. Coe K.M. Senalik D. Iorizzo M. Goldman I.L. Simon P.W. Dawson J.C. Carotenoid presence is associated with the or gene in domesticated carrot Genetics 2018 210 1497 1508 10.1534/genetics.118.301299 30352832 

  31. 31. Kim S.E. Kim H.S. Wang Z. Ke Q. Lee C.J. Park S.U. Lim Y.H. Park W.S. Ahn M.J. Kwak S.S. A single amino acid change at position 96 (Arg to His) of the sweetpotato Orange protein leads to carotenoid overaccumulation Plant Cell Rep. 2019 38 1393 1402 10.1007/s00299-019-02448-4 31346717 

  32. 32. Kim S.H. Ahn Y.O. Ahn M.J. Lee H.S. Kwak S.S. Down-regulation of β-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato Phytochemistry 2012 74 69 78 10.1016/j.phytochem.2011.11.003 22154923 

  33. 33. Kim S.H. Ahn Y.O. Ahn M.J. Jeong J.C. Lee H.S. Kwak S.S. Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures Plant Physiol. Biochem. 2013 70 445 454 10.1016/j.plaphy.2013.06.011 23835362 

  34. 34. Nicolle C. Simon G. Rock E. Amouroux P. Rémésy C. Genetic variability influences carotenoid, vitamin, phenolic and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars J. Am. Soc. Hortic. Sci. 2004 129 523 529 10.21273/JASHS.129.4.0523 

  35. 35. Takahata Y. Noda T. Nagata T. HPLC determination of β-carotene content of sweet-potato cultivars and its relationship with color values Jpn. J. Breed. 1993 43 421 427 10.1270/jsbbs1951.43.421 

  36. 36. Teow C.C. Truong V.D. McFeeters R.F. Thompson R.L. Pecota K.V. Yencho G.C. Antioxidant activities, phenolic, and β-carotene contents of sweetpotato genotypes with varying flesh colours Food Chem. 2007 103 829 838 10.1016/j.foodchem.2006.09.033 

  37. 37. Zhao C. Craig J.C. Petzold H.E. Dickerman A.W. Beers E.P. The xylem and phloem transcriptomes from secondary tissues of the Arabidopsis root hypocotyl Plant Physiol. 2005 138 803 818 10.1104/pp.105.060202 15923329 

  38. 38. Kim J.E. Rensing K.H. Douglas C.J. Cheng K.M. Chromoplasts ultrastructure and estimated carotene content in root secondary phloem of different carrot varieties Planta 2010 231 549 558 10.1007/s00425-009-1071-7 19946704 

  39. 39. Lu P.J. Wang C.Y. Yin T.T. Zhong S.L. Grierson D. Chen K.S. Xu C.J. Cytological and molecular characterization of carotenoid accumulation in normal and high-lycopene mutant oranges Sci. Rep. 2017 7 761 10.1038/s41598-017-00898-y 28396598 

  40. 40. Perrin F. Hartmann L. Dubois-Laurent C. Welsch R. Huet S. Hamama L. Briard M. Peltier D. Gagné S. Geoffriau E. Carotenoid gene expression explains the difference of carotenoid accumulation in carrot root tissues Planta 2017 245 737 747 10.1007/s00425-016-2637-9 27999990 

  41. 41. Jeffery J. Holzenburg A. King S. Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables Food Chem. 2012 133 1471 1477 10.1002/jsfa.5767 22870847 

  42. 42. Pogson B. McDonald K.A. Truong M. Britton G. DellaPenna D. Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants Plant Cell 1996 8 1627 1639 8837513 

  43. 43. Kim J. Smith J.J. Tian L. Dellapenna D. The evolution and function of carotenoid hydroxylases in Arabidopsis Plant Cell Physiol. 2009 50 463 479 10.1093/pcp/pcp005 19147649 

  44. 44. Beisel K.G. Jahnke S. Hofmann D. Köppchen S. Schurr U. Matsubara S. Continuous turnover of carotenes and chlorophyll a in mature leaves of Arabidopsis revealed by 14 CO 2 pulse-chase labeling Plant Physiol. 2010 152 2188 2199 10.1104/pp.109.151647 20118270 

  45. 45. Dhami N. Cazzonelli C.I. Environmental impacts on carotenoid metabolism in leaves Plant Growth Regul. 2020 7 1 23 10.1007/s10725-020-00661-w 

  46. 46. Beltran J.C. Stange C. Apocarotenoids: A new carotenoid-derived pathway Subcell. Biochem. 2016 79 239 272 27485225 

  47. 47. Sun T. Tadmor Y. Li L. Pathways for carotenoid biosynthesis, degradation, and storage Methods in Molecular Biology Rodríguez-Concepción M. Welsch R. Humana New York, NY, USA 2020 Volume 2083 3 23 

  48. 48. Hermanns A.S. Zhou X. Xu Q. Tadmor Y. Li L. Carotenoid pigment accumulation in horticultural plants Hortic. Plant J. 2020 10.1016/j.hpj.2020.10.002 

  49. 49. Fiedor J. Burda K. Potential role of carotenoids as antioxidants in human health and disease Nutrients 2014 6 466 488 10.3390/nu6020466 24473231 

  50. 50. Aksoy L. Kolay E. Ağılönüa Y. Aslan Z. Kargıoğlu M. Free radical scavenging activity, total phenolic content, total antioxidant status, and total oxidant status of endemic Thermopsis Turc Saudi J. Biol. Sci. 2013 20 235 239 10.1016/j.sjbs.2013.02.003 23961240 

  51. 51. Xiong L.M. Schumaker K.S. Zhu J.K. Cell signaling during cold, drought, and salt stress Plant Cell 2002 14 S165 S183 10.1105/tpc.000596 12045276 

  52. 52. Gouveia C.S.S. Ganança J.F.T. Slaski J.J. Lebot V. De Carvalho M.Â.A.P. Abscisic acid phytohormone estimation in tubers and shoots of Ipomoea batatas subjected to long drought stress using competitive immunological assay Physiol. Plant. 2020 10.1111/ppl.13192 32812251 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로