최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기NPG Asia Materials, v.12 no.1, 2020년, pp.81 -
Park, Ji-Min , Kim, Hyoung-Do , Joh, Hongrae , Jang, Seong Cheol , Park, Kyung , Park, Yun Chang , Nahm, Ho-Hyun , Kim, Yong-Hyun , Jeon, Sanghun , Kim, Hyun-Suk
AbstractA self-organized n+/n homojunction is proposed to achieve ultrahigh performance of thin film transistors (TFTs) based on an amorphous (Zn,Ba)SnO3 (ZBTO) semiconductor with sufficiently limited scattering centers. A deposited Al layer can induce a highly O-deficient (n+) interface layer in th...
Nature K Nomura 432 488 2004 10.1038/nature03090 Nomura, K. et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488-492 (2004).
Appl. Phys. Lett. RL Hoffman 82 733 2003 10.1063/1.1542677 Hoffman, R. L., Norris, B. J. & Wager, J. F. ZnO-based transparent thin-film transistors. Appl. Phys. Lett. 82, 733-735 (2003).
Semicond. Sci. Technol. JK Jeong 26 034008 2011 10.1088/0268-1242/26/3/034008 Jeong, J. K. The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays. Semicond. Sci. Technol. 26, 034008 (2011).
J. Soc. Inf. Disp. HN Lee 16 265 2008 10.1889/1.2841860 Lee, H. N. et al. Oxide TFT with multilayer gate insulator for backplane of AMOLED device. J. Soc. Inf. Disp. 16, 265-272 (2008).
Sci. Technol. Adv. Mater. T Kamiya 11 044305 2010 10.1088/1468-6996/11/4/044305 Kamiya, T., Nomura, K. & Hosono, H. Present status of amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11, 044305 (2010).
Thin Solid Films S Lee 520 3764 2012 10.1016/j.tsf.2011.06.082 Lee, S., Bierig, B. & Paine, D. C. Amorphous structure and electrical performance of low-temperature annealed amorphous indium zinc oxide transparent thin film transistors. Thin Solid Films 520, 3764-3768 (2012).
Thin Solid Films P Barquinha 515 8450 2007 10.1016/j.tsf.2007.03.176 Barquinha, P., Goncalves, G., Pereira, L., Martins, R. & Fortunato, E. Effect of annealing temperature on the properties of IZO films and IZO based transparent TFTs. Thin Solid Films 515, 8450-8454 (2007).
ACS Appl. Mater. Interfaces JS Seo 6 15335 2014 10.1021/am5037934 Seo, J. S. & Bae, B. S. Improved electrical performance and bias stability of solution-processed active bilayer structure of indium zinc oxide based TFT. ACS Appl. Mater. Interfaces 6, 15335-15343 (2014).
ACS Appl. Mater. Interfaces J Sheng 9 42928 2017 10.1021/acsami.7b15419 Sheng, J., Han, J. H., Choi, W. H., Park, J. & Park, J. S. Performance and stability enhancement of In-Sn-Zn-O TFTs using SiO2 gate dielectrics grown by low temperature atomic layer deposition. ACS Appl. Mater. Interfaces 9, 42928-42934 (2017).
Langmuir Y Zhao 29 151 2013 10.1021/la304581c Zhao, Y. et al. High-performance transistors based on zinc tin oxides by single spin-coating process. Langmuir 29, 151-157 (2013).
Appl. Phys. Lett. HQ Chiang 86 013503 2005 10.1063/1.1843286 Chiang, H. Q., Wager, J. F., Hoffman, R. L., Jeong, J. & Keszler, D. A. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005).
IEEE Electron Device Lett. KC Ok 36 38 2014 Ok, K. C., Jeong, H. J., Kim, H. S. & Park, J. S. Highly stable ZnON thin-film transistors with high field-effect mobility exceeding 50cm2/Vs. IEEE Electron Device Lett. 36, 38-40 (2014).
ACS Appl. Mater. Interfaces HD Kim 9 24688 2017 10.1021/acsami.7b03385 Kim, H. D. et al. Effects of fluorine doping on the electrical performance of ZnON thin-film transistors. ACS Appl. Mater. Interfaces 9, 24688-24695 (2017).
IEEE Electron Device Lett. JS Park 31 960 2010 10.1109/LED.2010.2051407 Park, J. S. et al. High performance and stability of double-gate Hf-In-Zn-O thin-film transistors under illumination. IEEE Electron Device Lett. 31, 960-962 (2010).
IEEE Electron Device Lett. KS Son 31 219 2010 10.1109/LED.2009.2038805 Son, K. S. et al. Characteristics of double-gate Ga-In-Zn-O thin-film transistor. IEEE Electron Device Lett. 31, 219-221 (2010).
Adv. Mater. HW Zan 24 3509 2012 10.1002/adma.201200683 Zan, H. W., Yeh, C. C., Meng, H. F., Tsai, C. C. & Chen, L. H. Achieving high field‐effect mobility in amorphous indium‐gallium‐zinc oxide by capping a strong reduction layer. Adv. Mater. 24, 3509-3514 (2012).
ACS Appl. Mater. Interfaces T Kim 11 22501 2019 10.1021/acsami.9b03865 Kim, T., Kim, M. J., Lee, J. & Jeong, J. K. Boosting carrier mobility in zinc oxynitride thin-film transistors via tantalum oxide encapsulation. ACS Appl. Mater. Interfaces 11, 22501-22509 (2019).
Sci. Rep. BH Lee 9 1 2019 10.1038/s41598-018-37186-2 Lee, B. H., Sohn, A., Kim, S. & Lee, S. Y. Mechanism of carrier controllability with metal capping layer on amorphous oxide SiZnSnO semiconductor. Sci. Rep. 9, 1-7 (2019).
IEEE Trans. Electron Devices H Ji 62 1195 2015 10.1109/TED.2015.2406331 Ji, H. et al. Improvement in field-effect mobility of indium zinc oxide transistor by titanium metal reaction method. IEEE Trans. Electron Devices 62, 1195-1199 (2015).
Sci. Rep. Y Shin 7 1 2017 10.1038/s41598-016-0028-x Shin, Y. et al. The mobility enhancement of indium gallium zinc oxide transistors via low-temperature crystallization using a tantalum catalytic layer. Sci. Rep. 7, 1-10 (2017).
IEEE Electron Device let. KT Kim 35 850 2014 10.1109/LED.2014.2329955 Kim, K. T., Kim, J., Kim, Y. H. & Park, S. K. In-situ metallic oxide capping for high mobility solution-processed metal-oxide TFTs. IEEE Electron Device let. 35, 850-852 (2014).
Appl. Phys. Lett. T Kamiya 96 122103 2010 10.1063/1.3364131 Kamiya, T., Nomura, K. & Hosono, H. Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors. Appl. Phys. Lett. 96, 122103 (2010).
Phys. Rev. B WC Germs 86 155319 2012 10.1103/PhysRevB.86.155319 Germs, W. C. Charge transport in amorphous InGaZnO thin-film transistors. Phys. Rev. B 86, 155319 (2012).
Phys. Rev. B. II Fishchuk 93 195204 2016 10.1103/PhysRevB.93.195204 Fishchuk, I. I. et al. Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: The case of the amorphous oxide InGaZnO. Phys. Rev. B. 93, 195204 (2016).
ACS Appl. Mater. Interfaces HH Nahm 12 3719 2019 10.1021/acsami.9b17456 Nahm, H. H., Kim, H. D., Park, J. M., Kim, H. S. & Kim, Y. H. Amorphous mixture of two indium-free BaSnO3 and ZnSnO3 for thin-film transistor with balanced performance and stability. ACS Appl. Mater. Interfaces 12, 3719-3726 (2019).
Phys. Rev. B. G Kresse 54 11169 1996 10.1103/PhysRevB.54.11169 Kresse, G. & Furthmüller, J. Self-interaction correction to density functional approximation for many electron systems. Phys. Rev. B. 54, 11169 (1996).
Comput. Mater. Sci. G Kresse 6 15 1996 10.1016/0927-0256(96)00008-0 Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996).
Phys. Rev. B PE Blöchl 50 17953 1994 10.1103/PhysRevB.50.17953 Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
Phys. Rev. Lett. JP Perdew 100 136406 2008 10.1103/PhysRevLett.100.136406 Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Mater. Charact. B Feng 49 129 2002 10.1016/S1044-5803(02)00341-8 Feng, B. et al. Surface characterization of titanium and adsorption of bovine serum albumin. Mater. Charact. 49, 129-137 (2002).
Surf. Sci. A Hasnaoui 579 47 2005 10.1016/j.susc.2005.01.043 Hasnaoui, A. et al. Molecular dynamics simulations of the nano-scale room-temperature oxidation of aluminum single crystals. Surf. Sci. 579, 47-57 (2005).
IEEE Trans. Electron Devices YH Wang 63 1893 2016 10.1109/TED.2016.2540679 Wang, Y. H. et al. Performance improvement of atomic layer-deposited ZnO/Al 2 O 3 thin-film transistors by low-temperature annealing in air. IEEE Trans. Electron Devices 63, 1893-1898 (2016).
James, S. in Lange’s handbook of Chemistry, pps 6-1 to 6-147 (McGraw-Hill Education LLC, USA, 2005).
RSC Adv. SJ Han 6 71757 2016 10.1039/C6RA08726D Han, S. J. et al. Composition-dependent structural and electrical properties of p-type SnOx thin films prepared by reactive DC magnetron sputtering: Effects of oxygen pressure and heat treatment. RSC Adv. 6, 71757-71766 (2016).
Lide, D. R. in CRC Handbook of Chemistry and Physics 77th ed. pp. 12 (CRC press, Boca Raton, New York, 1996).
Adv. Sci. C Chen 6 1801189 2019 10.1002/advs.201801189 Chen, C. et al. Analysis of ultrahigh apparent mobility in oxide field‐effect transistors. Adv. Sci. 6, 1801189 (2019).
Appl. Phys. Lett. GH Kim 96 163506 2010 10.1063/1.3413939 Kim, G. H. et al. Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 96, 163506 (2010).
J. Vac. Sci. Technol. A. SJ Yun 15 2993 1997 10.1116/1.580895 Yun, S. J., Lee, K. H., Skarp, J., Kim, H. R. & Nam, K. S. Dependence of atomic layer-deposited Al2O3 films characteristics on growth temperature and Al precursors of Al (CH3)3 and AlCl3. J. Vac. Sci. Technol. A. 15, 2993-2997 (1997).
IEEE Electron Device Lett. IT Cho 30 828 2009 10.1109/LED.2009.2023543 Cho, I. T. et al. Comparative study of the low-frequency-noise behaviors in a-IGZO thin-film transistors with Al2O3 and Al2O3/SiNx gate dielectrics. IEEE Electron Device Lett. 30, 828-830 (2009).
IEEE Electron Device Lett. S Jeon 31 1128 2010 10.1109/LED.2010.2059694 Jeon, S. et al. Low-frequency noise performance of a bilayer InZnO-InGaZnO thin-film transistor for analog device applications. IEEE Electron Device Lett. 31, 1128-1130 (2010).
Appl. Phys. Lett. HS Choi 100 173501 2012 10.1063/1.4705406 Choi, H. S. et al. The impact of active layer thickness on low-frequency noise characteristics in InZnO thin-film transistors with high mobility. Appl. Phys. Lett. 100, 173501 (2012).
IEEE Electron Device Lett. T Kim 37 1131 2016 10.1109/LED.2016.2594258 Kim, T., Nam, Y., Hur, J., Park, S. H. K. & Jeon, S. The influence of hydrogen on defects of In-Ga-Zn-O semiconductor thin-film transistors with atomic-layer deposition of Al 2 O 3. IEEE Electron Device Lett. 37, 1131-1134 (2016).
IEEE Electron Device Lett. HS Choi 32 1083 2011 10.1109/LED.2011.2158057 Choi, H. S. et al. Verification of interface state properties of a-InGaZnO thin-film transistors with SiNx and SiO2 gate dielectrics by low-frequency noise measurements. IEEE Electron Device Lett. 32, 1083-1085 (2011).
Appl. Phys. Lett. RBM Cross 89 263513 2006 10.1063/1.2425020 Cross, R. B. M. & De Souza, M. M. Investigating the stability of zinc oxide thin film transistors. Appl. Phys. Lett. 89, 263513 (2006).
Appl. Phys. Lett. A Suresh 92 033502 2008 10.1063/1.2824758 Suresh, A. & Muth, J. F. Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 92, 033502 (2008).
Electron. Mater. Lett. ST Kim 13 406 2017 10.1007/s13391-017-1613-2 Kim, S. T. et al. Achieving high carrier mobility exceeding 70 cm 2/Vs in amorphous zinc tin oxide thin-film transistors. Electron. Mater. Lett. 13, 406-411 (2017).
Appl. Phys. Lett. H-W Zan 98 153506 2011 10.1063/1.3578403 Zan, H.-W. et al. Dual gate indium-gallium-zinc-oxide thin film transistor with an unisolated floating metal gate for threshold voltage modulation and mobility enhancement. Appl. Phys. Lett. 98, 153506 (2011).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.