$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Digital Transformation and Environmental Sustainability: A Review and Research Agenda 원문보기

Sustainability, v.13 no.3, 2021년, pp.1530 -   

Feroz, Abdul Karim (School of Business and Technology Management, College of Business, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Zo, Hangjung (School of Business and Technology Management, College of Business, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea) ,  Chiravuri, Ananth (College of Business and Economics, United Arab Emirates University, Al Ain 15551, United Arab Emirates)

Abstract AI-Helper 아이콘AI-Helper

Digital transformation refers to the unprecedented disruptions in society, industry, and organizations stimulated by advances in digital technologies such as artificial intelligence, big data analytics, cloud computing, and the Internet of Things (IoT). Presently, there is a lack of studies to map d...

참고문헌 (163)

  1. Vial Understanding digital transformation: A review and a research agenda J. Strateg. Inf. Syst. 2019 10.1016/j.jsis.2019.01.003 28 118 

  2. Verhoef, P.C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J.Q., Fabian, N., and Haenlein, M. (2019). Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res., in press. 

  3. Papies On-Demand streaming services and music industry revenues-Insights from Spotify’s market entry Int. J. Res. Mark. 2016 10.1016/j.ijresmar.2015.11.002 33 314 

  4. Fitzgerald How Starbucks has gone digital Sloan Manag. Rev. 2013 54 1 

  5. Karimi The Role of Dynamic Capabilities in Responding to Digital Disruption: A Factor-Based Study of the Newspaper Industry J. Manag. Inform. Syst. 2015 10.1080/07421222.2015.1029380 32 39 

  6. Lemon Understanding Customer Experience Throughout the Customer Journey J. Mark. 2016 10.1509/jm.15.0420 80 69 

  7. Agarwal The Digital Transformation of Healthcare: Current Status and the Road Ahead Inform. Syst. Res. 2010 10.1287/isre.1100.0327 21 796 

  8. Chan The Internet and Racial Hate Crime: Offline Spillovers from Online Access MIS Q. 2016 10.25300/MISQ/2016/40.2.05 40 381 

  9. Kamble Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives Process. Saf. Environ. 2018 10.1016/j.psep.2018.05.009 117 408 

  10. Jabbour Industry 4.0 and the circular economy: A proposed research agenda and original roadmap for sustainable operations Ann. Oper. Res. 2018 10.1007/s10479-018-2772-8 270 273 

  11. Weersink Opportunities and Challenges for Big Data in Agricultural and Environmental Analysis Annu. Rev. Resour. Econ. 2018 10.1146/annurev-resource-100516-053654 10 19 

  12. Majchrzak Designing for digital transformation: Lessons for information systems research from the study of ICT and societal challenges MIS Q. 2016 10.25300/MISQ/2016/40:2.03 40 267 

  13. Beier, G., Fritzsche, K., Kunkel, S., Matthess, M., Niehoff, S., Reißig, M., and van Zyl-Bulitta, V. (2020). Green Digitized Economy? Challenges and Opportunities for Sustainability, Institute for Advanced Sustainability Studies (IASS). IASS Fact Sheet 2020/1. 

  14. Kunkel Digital transformation and environmental sustainability in industry: Putting expectations in Asian and African policies into perspective Environ. Sci. Policy 2020 10.1016/j.envsci.2020.06.022 112 318 

  15. Bharadwaj Digital Business Strategy: Toward a Next Generation of Insights MIS Q. 2013 10.25300/MISQ/2013/37:2.3 37 471 

  16. Fitzgerald Embracing digital technology: A new strategic imperative Sloan Manag. Rev. 2014 55 1 

  17. Hess Options for Formulating a Digital Transformation Strategy 1 Key Decisions for a Digital Transformation Strategy MIS Q. Exec. 2016 15 123 

  18. Piccinini, E., Hanelt, A., Gregory, R.W., and Kolbe, L.M. (2015, January 13-16). Transforming industrial business: The impact of digital transformation on automotive organizations. Proceedings of the 36th International Conference on Information Systems (ICIS 2015), Fort Worth, TX, USA. 

  19. Singh How Chief Digital Officers Promote the Digital Transformation of their Companies MIS Q. Exec. 2017 16 1 

  20. Andriole Five Myths About Digital Transformation Sloan Manag. Rev. 2017 58 22 

  21. 10.24251/HICSS.2018.493 Liere-Netheler, K., Packmohr, S., and Vogelsang, K. (2018, January 3-6). Drivers of Digital Transformation in Manufacturing. Proceedings of the 51st Hawaii International Conference on System Sciences (HICSS 2018), Waikoloa Village, HI, USA. 

  22. Nwankpa Balancing exploration and exploitation of IT resources: The influence of Digital Business Intensity on perceived organizational performance Eur. J. Inform. Syst. 2017 10.1057/s41303-017-0049-y 26 469 

  23. Paavola, R., Hallikainen, P., and Elbanna, A. (2017, January 5-10). Role of middle managers in modular digital transformation: The case of Servu. Proceedings of the 25th European Conference on Information Systems (ECIS 2017), Guimaraes, Portugal. 

  24. 10.18690/978-961-286-043-1.30 Morakanyane, R., Grace, A., and O’Reilly, P. (2017, January 18-21). Conceptualizing digital transformation in business organizations: A systematic review of literature. Proceedings of the 30th Bled eConference: Digital Transformation-From Connecting Things to Transforming our Lives (BLED 2017), Bled, Slovenia. 

  25. Li Digital transformation by SME entrepreneurs: A capability perspective Inform. Syst. J. 2018 10.1111/isj.12153 28 1129 

  26. Legner Digitalization: Opportunity and Challenge for the Business and Information Systems Engineering Community Bus. Inform. Syst. Eng. 2017 10.1007/s12599-017-0484-2 59 301 

  27. Sarc Digitalisation and intelligent robotics in value chain of circular economy oriented waste management-A review Waste Manag. 2019 10.1016/j.wasman.2019.06.035 95 476 

  28. Cohen Ride On! Mobility Business Models for the Sharing Economy Organ. Environ. 2014 10.1177/1086026614546199 27 279 

  29. Ferranti, P., Berry, E., and Jock, A. (2019). Green Production Strategies. Encyclopedia of Food Security and Sustainability, Elsevier. 

  30. Ukko Sustainability strategy as a moderator in the relationship between digital business strategy and financial performance J. Clean. Prod. 2019 10.1016/j.jclepro.2019.117626 236 117626 

  31. Song Spatial econometric analysis of factors influencing regional energy efficiency in China Environ. Sci. Pollut. Res. 2018 10.1007/s11356-018-1574-5 25 13745 

  32. Aron Green innovation in natural resource industries: The case of local suppliers in the Peruvian mining industry Extr. Ind. Soc. 2019 7 353 

  33. Neutzling Linking sustainability-oriented innovation to supply chain relationship integration J. Clean. Prod. 2018 10.1016/j.jclepro.2017.11.091 172 3448 

  34. Tariq Drivers and consequences of green product and process innovation: A systematic review, conceptual framework, and future outlook Technol. Soc. 2017 10.1016/j.techsoc.2017.06.002 51 8 

  35. Goralski Artificial intelligence and sustainable development Int. J. Manag. Educ. Oxf. 2020 18 100330 

  36. Balogun Assessing the Potentials of Digitalization as a Tool for Climate Change Adaptation and Sustainable Development in Urban Centres Sustain. Cities Soc. 2020 10.1016/j.scs.2019.101888 53 101888 

  37. Yalina Digital workplace: Digital transformation for environmental sustainability IOP Conf. Ser. Earth Environ. Sci. 2020 10.1088/1755-1315/456/1/012022 456 012022 

  38. Demartini Digitalization Technologies for Industrial Sustainability Procedia Manuf. 2019 10.1016/j.promfg.2019.04.032 33 264 

  39. Leng Blockchain-Empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey Renew. Sustain. Energy Rev. 2020 10.1016/j.rser.2020.110112 132 110112 

  40. Esmaeilian Blockchain for the future of sustainable supply chain management in Industry 4.0 Resour. Conserv. Recycl. 2020 10.1016/j.resconrec.2020.105064 163 105064 

  41. ElMassah Digital transformation and localizing the Sustainable Development Goals (SDGs) Ecol. Econ. 2020 10.1016/j.ecolecon.2019.106490 169 106490 

  42. Tranfield Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review* Introduction: The need for an evidence- informed approach Br. J. Manag. 2003 14 207 

  43. Jones Application of systematic review methods to qualitative research: Practical issues J. Adv. Nurs. 2004 10.1111/j.1365-2648.2004.03196.x 48 271 

  44. Bandara, W., Miskon, S., and Fielt, E. (2011, January 9-11). A systematic, tool-supported method for conducting literature reviews in information systems. Proceedings of the 19th European Conference on Information Systems (ECIS 2011), Helsinki, Finland. 

  45. Vom Brocke, J., Simons, A., Niehaves, B., Niehaves, B., Riemer, K., Plattfaut, R., and Cleven, A. (2009, January 8-10). Reconstructing the giant: On the importance of rigour in documenting the literature search process. Proceedings of the 17th European Conference on Information Systems (ECIS 2009), Verona, Italy. 

  46. Harzing Google Scholar, Scopus and the Web of Science: A longitudinal and cross-disciplinary comparison Scientometrics 2016 10.1007/s11192-015-1798-9 106 787 

  47. Tober PubMed, ScienceDirect, Scopus or Google Scholar-Which is the best search engine for an effective literature research in laser medicine? Med. Laser Appl. 2011 10.1016/j.mla.2011.05.006 26 139 

  48. Sebastian How Big Old Companies Navigate Digital Transformation MIS Q. Exec. 2017 16 197 

  49. Levy A systems approach to conduct an effective literature review in support of information systems research Inf. Sci. 2006 9 181 

  50. 10.1371/journal.pmed.1000097 Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., and PRISMA, G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med., 6. 

  51. An Allocation of carbon dioxide emission permits with the minimum cost for Chinese provinces in big data environment J. Clean. Prod. 2017 10.1016/j.jclepro.2016.07.072 142 886 

  52. Chuai High resolution carbon emissions simulation and spatial heterogeneity analysis based on big data in Nanjing City, China Sci. Total Environ. 2019 10.1016/j.scitotenv.2019.05.138 686 828 

  53. Honarvar Towards Sustainable Smart City by Particulate Matter Prediction Using Urban Big Data, Excluding Expensive Air Pollution Infrastructures Big Data Res. 2019 10.1016/j.bdr.2018.05.006 17 56 

  54. Kanabkaew Detection of PM2.5 plume movement from IoT ground level monitoring data Environ. Pollut. 2019 10.1016/j.envpol.2019.05.082 252 543 

  55. Liu Pricing policies and coordination of low-carbon supply chain considering targeted advertisement and carbon emission reduction costs in the big data environment J. Clean. Prod. 2019 10.1016/j.jclepro.2018.10.328 210 343 

  56. Ferrari An innovative IoT-oriented prototype platform for the management and valorisation of the organic fraction of municipal solid waste J. Clean. Prod. 2020 10.1016/j.jclepro.2019.119618 247 119618 

  57. Ramirez The adoption of internet of things in a circular supply chain framework for the recovery of WEEE: The case of lithium-ion electric vehicle battery packs Waste Manag. 2020 10.1016/j.wasman.2019.09.045 103 32 

  58. Huang Artificial-Intelligence for Waste Minimization in the Process Industry Comput. Ind. 1993 10.1016/0166-3615(93)90059-A 22 117 

  59. Lu Analysis of the construction waste management performance in Hong Kong: The public and private sectors compared using big data J. Clean. Prod. 2016 10.1016/j.jclepro.2015.06.106 112 521 

  60. Mesiranta Creativity, aesthetics and ethics of food waste in social media campaigns J. Clean. Prod. 2018 10.1016/j.jclepro.2018.05.202 195 102 

  61. 10.1016/j.matpr.2020.01.498 Venkatesan, G., Mithuna, R., and Gandhimathi, S. (2020). IOT-Based monitoring of lab scale constitutive landfill model of food waste. Mater. Today Proc., in press. 

  62. Kaur Heuristic modeling for sustainable procurement and logistics in a supply chain using big data Comput. Oper. Res. 2018 10.1016/j.cor.2017.05.008 98 301 

  63. Kumar A big data driven sustainable manufacturing framework for condition-based maintenance prediction J. Comput. Sci. Neth. 2018 10.1016/j.jocs.2017.06.006 27 428 

  64. Manavalan A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements Comput. Ind. Eng. 2019 10.1016/j.cie.2018.11.030 127 925 

  65. Papadopoulos The role of Big Data in explaining disaster resilience in supply chains for sustainability J. Clean. Prod. 2017 10.1016/j.jclepro.2016.03.059 142 1108 

  66. Raut Linking big data analytics and operational sustainability practices for sustainable business management J. Clean. Prod. 2019 10.1016/j.jclepro.2019.03.181 224 10 

  67. Shivajee Manufacturing conversion cost reduction using quality control tools and digitization of real-time data J. Clean. Prod. 2019 10.1016/j.jclepro.2019.117678 237 117678 

  68. Shukla Next generation smart manufacturing and service systems using big data analytics Comput. Ind. Eng. 2019 10.1016/j.cie.2018.12.026 128 905 

  69. Allam On big data, artificial intelligence and smart cities Cities 2019 10.1016/j.cities.2019.01.032 89 80 

  70. Bibri The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability Sustain. Cities Soc. 2018 10.1016/j.scs.2017.12.034 38 230 

  71. Gohar SMART TSS: Defining transportation system behavior using big data analytics in smart cities Sustain. Cities Soc. 2018 10.1016/j.scs.2018.05.008 41 114 

  72. Khan Using energy-efficient trust management to protect IoT networks for smart cities Sustain. Cities Soc. 2018 10.1016/j.scs.2018.03.026 40 1 

  73. Malik A methodology for real-time data sustainability in smart city: Towards inferencing and analytics for big-data Sustain. Cities Soc. 2018 10.1016/j.scs.2017.11.031 39 548 

  74. Pimpinella Walk this way! An IoT-based urban routing system for smart cities Comput. Netw. 2019 10.1016/j.comnet.2019.07.013 162 106857 

  75. Lamba Integrated decisions for supplier selection and lot-sizing considering different carbon emission regulations in Big Data environment Comput. Ind. Eng. 2019 10.1016/j.cie.2018.04.028 128 1052 

  76. Miranda Sensing, smart and sustainable technologies for Agri-Food 4.0 Comput. Ind. 2019 10.1016/j.compind.2019.02.002 108 21 

  77. Singh Big data cloud computing framework for low carbon supplier selection in the beef supply chain J. Clean. Prod. 2018 10.1016/j.jclepro.2018.07.236 202 139 

  78. Bui Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods Sci. Total Environ. 2019 10.1016/j.scitotenv.2019.02.422 668 1038 

  79. Kashiwao A neural network-based local rainfall prediction system using meteorological data on the Internet: A case study using data from the Japan Meteorological Agency Appl. Soft Comput. 2017 10.1016/j.asoc.2017.03.015 56 317 

  80. Jabbour Business opportunities and challenges as the two sides of the climate change: Corporate responses and potential implications for big data management towards a low carbon society J. Clean. Prod. 2018 10.1016/j.jclepro.2018.04.113 189 763 

  81. Kavota Social media and disaster management: Case of the north and south Kivu regions in the Democratic Republic of the Congo Int. J. Inform. Manag. 2020 10.1016/j.ijinfomgt.2020.102068 52 102068 

  82. Kim Artificial neural network-based storm surge forecast model: Practical application to Sakai Minato, Japan Appl. Ocean Res. 2019 10.1016/j.apor.2019.101871 91 101871 

  83. Belaud Big data for agri-food 4.0: Application to sustainability management for by-products supply chain Comput. Ind. 2019 10.1016/j.compind.2019.06.006 111 41 

  84. Logan Investigating the performance of internet of things based anaerobic digestion of food waste Process Saf. Environ. 2019 10.1016/j.psep.2019.05.025 127 277 

  85. Sujata The role of social media on recycling behaviour Sustain. Prod. Consump. 2019 10.1016/j.spc.2019.08.005 20 365 

  86. Ancion Three common metal contaminants of urban runoff (Zn, Cu & Pb) accumulate in freshwater biofilm and modify embedded bacterial communities Environ. Pollut. 2010 10.1016/j.envpol.2010.04.013 158 2738 

  87. Mani In Search of Pollution Havens? Dirty Industry in the World Economy, 1960 to 1995 J. Environ. Dev. 1998 10.1177/107049659800700302 7 215 

  88. Ye Tackling environmental challenges in pollution controls using artificial intelligence: A review Sci. Total Environ. 2020 10.1016/j.scitotenv.2019.134279 699 134279 

  89. Paffumi Big Data for Supporting Low-Carbon Road Transport Policies in Europe: Applications, Challenges and Opportunities Big Data Res. 2016 10.1016/j.bdr.2016.04.003 6 11 

  90. Huang Carbon emission flow from self-driving tours and its spatial relationship with scenic spots-A traffic-related big data method J. Clean. Prod. 2017 10.1016/j.jclepro.2016.09.129 142 946 

  91. Chen Impacts of air pollution and its spatial spillover effect on public health based on China’s big data sample J. Clean. Prod. 2017 10.1016/j.jclepro.2016.02.119 142 915 

  92. Ma Identification of high impact factors of air quality on a national scale using big data and machine learning techniques J. Clean. Prod. 2020 10.1016/j.jclepro.2019.118955 244 118955 

  93. Zhang, D., Pan, S.L., Yu, J., and Liu, W. (2019). Orchestrating big data analytics capability for sustainability: A study of air pollution management in China. Inf. Manag., in press. 

  94. Idrees Low cost air pollution monitoring systems: A review of protocols and enabling technologies J. Ind. Inf. Integr. 2020 17 100123 

  95. Dupont Evaluating air quality by combining stationary, smart mobile pollution monitoring and data-driven modelling J. Clean. Prod. 2019 10.1016/j.jclepro.2019.02.179 221 398 

  96. Leng Prediction of size-fractionated airborne particle-bound metals using MLR, BP-ANN and SVM analyses Chemosphere 2017 10.1016/j.chemosphere.2017.04.015 180 513 

  97. Shang A novel model for hourly PM2.5 concentration prediction based on CART and EELM Sci. Total Environ. 2019 10.1016/j.scitotenv.2018.10.193 651 3043 

  98. Xie Methods for defining the scopes and priorities for joint prevention and control of air pollution regions based on data-mining technologies J. Clean. Prod. 2018 10.1016/j.jclepro.2018.03.101 185 912 

  99. Inkinen Industrial applications of big data in disruptive innovations supporting environmental reporting J. Ind. Inf. Integr. 2019 16 100105 

  100. Herman Using big data for insights into sustainable energy consumption in industrial and mining sectors J. Clean. Prod. 2018 10.1016/j.jclepro.2018.06.290 197 1352 

  101. Fijani Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters Sci. Total Environ. 2019 10.1016/j.scitotenv.2018.08.221 648 839 

  102. Hadipour An experimental setup of multi-intelligent control system (MICS) of water management using the Internet of Things (IoT) ISA Trans. 2020 10.1016/j.isatra.2019.06.026 96 309 

  103. Huang Artificial neural network modeling of thin layer drying behavior of municipal sewage sludge Measurement 2015 10.1016/j.measurement.2015.06.014 73 640 

  104. Nag Sustainable bioremediation of Cd(II) from aqueous solution using natural waste materials: Kinetics, equilibrium, thermodynamics, toxicity studies and GA-ANN hybrid modelling Environ. Technol. Innov. 2018 10.1016/j.eti.2018.04.009 11 83 

  105. Soleymani Performance and modeling of UV/persulfate/Ce(IV) process as a dual oxidant photochemical treatment system: Kinetic study and operating cost estimation Chem. Eng. J. 2018 10.1016/j.cej.2018.04.093 347 243 

  106. Yu Possible control approaches of the Electro-Fenton process for textile wastewater treatment using on-line monitoring of DO and ORP Chem. Eng. J. 2013 10.1016/j.cej.2012.12.061 218 341 

  107. Zhao Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse Process Saf. Environ. 2020 10.1016/j.psep.2019.11.014 133 169 

  108. Kaplan Rulers of the world, unite! The challenges and opportunities of artificial intelligence Bus. Horiz. 2020 10.1016/j.bushor.2019.09.003 63 37 

  109. Zhang Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China Sci. Total Environ. 2019 10.1016/j.scitotenv.2019.01.431 665 338 

  110. Yazdani Improving construction and demolition waste collection service in an urban area using a simheuristic approach: A case study in Sydney, Australia J. Clean. Prod. 2021 10.1016/j.jclepro.2020.124138 280 124138 

  111. Papargyropoulou The food waste hierarchy as a framework for the management of food surplus and food waste J. Clean. Prod. 2014 10.1016/j.jclepro.2014.04.020 76 106 

  112. Sharma Artificial intelligence and effective governance: A review, critique and research agenda Sustain. Futures 2020 10.1016/j.sftr.2019.100004 2 100004 

  113. Nowakowski Vehicle route planning in e-waste mobile collection on demand supported by artificial intelligence algorithms Transp. Res. D Transp. Environ. 2018 10.1016/j.trd.2018.04.007 63 1 

  114. Lu Big data analytics to identify illegal construction waste dumping: A Hong Kong study Resour. Conserv. Recycl. 2019 10.1016/j.resconrec.2018.10.039 141 264 

  115. Marques An IoT-based smart cities infrastructure architecture applied to a waste management scenario Ad Hoc Netw. 2019 10.1016/j.adhoc.2018.12.009 87 200 

  116. Pocajt Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis Environ. Sci. Pollut. Res. 2017 10.1007/s11356-016-7767-x 24 299 

  117. Bilal Big data architecture for construction waste analytics (CWA): A conceptual framework J. Build. Eng. 2016 10.1016/j.jobe.2016.03.002 6 144 

  118. Barchi Artificial intelligence approach for high level production of amylase using Rhizopus microsporus var. oligosporus and different agro-industrial wastes J. Chem. Technol. Biotechnol. 2017 10.1002/jctb.5054 92 684 

  119. Genuino Application of artificial neural network in the modeling and optimization of humic acid extraction from municipal solid waste biochar J. Environ. Chem. Eng. 2017 10.1016/j.jece.2017.07.071 5 4101 

  120. Ghobakhloo Industry 4.0, digitization, and opportunities for sustainability J. Clean. Prod. 2020 10.1016/j.jclepro.2019.119869 252 119869 

  121. Jiang Data-Driven analytical framework for waste-dumping behaviour analysis to facilitate policy regulations Waste Manag. 2020 10.1016/j.wasman.2019.12.041 103 285 

  122. Lu Benchmarking construction waste management performance using big data Resour. Conserv. Recycl. 2015 10.1016/j.resconrec.2015.10.013 105 49 

  123. Lu The effects of green building on construction waste minimization: Triangulating “big data” with “thick data” Waste Manag. 2018 10.1016/j.wasman.2018.07.030 79 142 

  124. Qi A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill J. Clean. Prod. 2018 10.1016/j.jclepro.2018.02.154 183 566 

  125. Cassiraga Predictive analysis of urban waste generation for the city of Bogota, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks Heliyon 2019 10.1016/j.heliyon.2019.e02810 5 e02810 

  126. Olivares An end-to-end Internet of Things solution for Reverse Supply Chain Management in Industry 4.0 Comput. Ind. 2019 10.1016/j.compind.2019.103127 112 103127 

  127. Gu Internet of things and Big Data as potential solutions to the problems in waste electrical and electronic equipment management: An exploratory study Waste Manag. 2017 10.1016/j.wasman.2017.07.037 68 434 

  128. Kang Electronic waste collection systems using Internet of Things (IoT): Household electronic waste management in Malaysia J. Clean. Prod. 2020 10.1016/j.jclepro.2019.119801 252 119801 

  129. Hong IoT-Based smart garbage system for efficient food waste management Sci. World J. 2014 10.1155/2014/646953 2014 646953 

  130. Wen Design, implementation, and evaluation of an Internet of Things (IoT) network system for restaurant food waste management Waste Manag. 2018 10.1016/j.wasman.2017.11.054 73 26 

  131. Partel Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence Comput. Electron. Agric. 2019 10.1016/j.compag.2018.12.048 157 339 

  132. 10.1016/B978-012373623-9/50012-5 El-Haggar, S.M. (2007). Sustainable Industrial Design and Waste Management, Academic Press. 

  133. Zhang A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products J. Clean. Prod. 2017 10.1016/j.jclepro.2016.07.123 142 626 

  134. Ren A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions J. Clean. Prod. 2019 10.1016/j.jclepro.2018.11.025 210 1343 

  135. Roy Mapping the business focus in sustainable production and consumption literature: Review and research framework J. Clean. Prod. 2017 10.1016/j.jclepro.2017.03.040 150 224 

  136. Liu How can smart technologies contribute to sustainable product lifecycle management? J. Clean. Prod. 2020 10.1016/j.jclepro.2019.119423 249 119423 

  137. Mao Opportunities and Challenges of Artificial Intelligence for Green Manufacturing in the Process Industry Engineering 2019 10.1016/j.eng.2019.08.013 5 995 

  138. Kerdlap Zero waste manufacturing: A framework and review of technology, research, and implementation barriers for enabling a circular economy transition in Singapore Resour. Conserv. Recycl. 2019 10.1016/j.resconrec.2019.104438 151 104438 

  139. Wang Big Data enabled Intelligent Immune System for energy efficient manufacturing management J. Clean. Prod. 2018 10.1016/j.jclepro.2018.05.203 195 507 

  140. Mehmood A review of the applications of artificial intelligence and big data to buildings for energy-efficiency and a comfortable indoor living environment Energy Build. 2019 10.1016/j.enbuild.2019.109383 202 109383 

  141. Tao Data-Driven smart manufacturing J. Manuf. Syst. 2018 10.1016/j.jmsy.2018.01.006 48 157 

  142. Wang Big data: New tend to sustainable consumption research J. Clean. Prod. 2019 10.1016/j.jclepro.2019.06.330 236 117499 

  143. 10.1016/j.procir.2019.04.015 Xiang, F., Zhang, Z., Zuo, Y., and Tao, F. (2019, January 12-14). Digital twin driven green material optimal-selection towards sustainable manufacturing. Proceedings of the 52nd CIRP Conference on Manufacturing Systems (CMS), Ljubljana, Slovenia. 

  144. Zhang A big data driven analytical framework for energy-intensive manufacturing industries J. Clean. Prod. 2018 10.1016/j.jclepro.2018.06.170 197 57 

  145. Bag Big data analytics as an operational excellence approach to enhance sustainable supply chain performance Resour. Conserv. Recycl. 2020 10.1016/j.resconrec.2019.104559 153 104559 

  146. Bressanelli, G., Adrodegari, F., Perona, M., and Saccani, N. (2018, January 29-31). The role of digital technologies to overcome Circular Economy challenges in PSS Business Models: An exploratory case study. Proceedings of the 10th CIRP Conference on Industrial Product-Service Systems (IPS2 2018), Linkoping, Sweden. 

  147. Xu The influence of big data system for used product management on manufacturing-remanufacturing operations J. Clean. Prod. 2019 10.1016/j.jclepro.2018.10.240 209 782 

  148. Huang Defining and measuring urban sustainability: A review of indicators Landsc. Ecol. 2015 10.1007/s10980-015-0208-2 30 1175 

  149. Bibri Smart sustainable cities of the future: An extensive interdisciplinary literature review Sustain. Cities Soc. 2017 10.1016/j.scs.2017.02.016 31 183 

  150. Wu Smart city with Chinese characteristics against the background of big data: Idea, action and risk J. Clean. Prod. 2018 10.1016/j.jclepro.2017.01.047 173 60 

  151. Sun Research on the application of block chain big data platform in the construction of new smart city for low carbon emission and green environment Comput. Commun. 2020 10.1016/j.comcom.2019.10.031 149 332 

  152. Osman A novel big data analytics framework for smart cities Future Gener. Compit. Syst. 2019 10.1016/j.future.2018.06.046 91 620 

  153. Kim Operating an environmentally sustainable city using fine dust level big data measured at individual elementary schools Sustain. Cities Soc. 2018 10.1016/j.scs.2017.10.019 37 1 

  154. Sodhro Towards an optimal resource management for IoT based Green and sustainable smart cities J. Clean. Prod. 2019 10.1016/j.jclepro.2019.01.188 220 1167 

  155. Malekloo Smart parking in IoT-enabled cities: A survey Sustain. Cities Soc. 2019 10.1016/j.scs.2019.101608 49 101608 

  156. Chatterjee Success of IoT in Smart Cities of India: An empirical analysis Gov. Inform. Q. 2018 10.1016/j.giq.2018.05.002 35 349 

  157. Esmaeilian The future of waste management in smart and sustainable cities: A review and concept paper Waste Manag. 2018 10.1016/j.wasman.2018.09.047 81 177 

  158. Ju Citizen-Centered big data analysis-driven governance intelligence framework for smart cities Telecommun. Policy 2018 10.1016/j.telpol.2018.01.003 42 881 

  159. Lim Smart cities with big data: Reference models, challenges, and considerations Cities 2018 10.1016/j.cities.2018.04.011 82 86 

  160. Martin Smart-Sustainability: A new urban fix? Sustain. Cities Soc. 2019 10.1016/j.scs.2018.11.028 45 640 

  161. Teece Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance Strateg. Manag. J. 2007 10.1002/smj.640 28 1319 

  162. Warner Building dynamic capabilities for digital transformation: An ongoing process of strategic renewal Long Range Plan. 2019 10.1016/j.lrp.2018.12.001 52 326 

  163. Matt Digital Transformation Strategies Bus. Inf. Syst. Eng. 2015 10.1007/s12599-015-0401-5 57 339 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로