$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Preclinical Efficacy and Safety of VEGF-Grab, a Novel Anti-VEGF Drug, and Its Comparison to Aflibercept 원문보기

Investigative ophthalmology & visual science, v.61 no.13, 2020년, pp.22 -   

Hong, Hye Kyoung (Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Korea) ,  Park, Young Joo (Department of Ophthalmology, Kangwon National University Hospital, Chuncheon, Korea) ,  Kim, Duk Ki (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea) ,  Ryoo, Na-Kyung (Department of Ophthalmology, Veterans Health Service Medical Center, Seoul, Korea) ,  Ko, You-Jin (Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Korea) ,  Park, Kyu Hyung (Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Korea) ,  Kim, Ho Min (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea) ,  Woo, Se Joon (Department of Ophthalmology, Seoul National University Bundang Hospital, Seongnam, Korea)

Abstract AI-Helper 아이콘AI-Helper

PurposeVEGF-Grab is a novel anti-vascular endothelial growth factor (VEGF) candidate drug with higher affinity to both VEGF and placental growth factor (PlGF) compared to aflibercept. We investigated the preclinical efficacy of VEGF-Grab for ophthalmic therapy and compared it to that of aflibercept....

Keyword

참고문헌 (44)

  1. 1. Ferrara N , Gerber HP , LeCouter J The biology of VEGF and its receptors . Nat Med . 2003 ; 9 ( 6 ): 669 ? 676 . 12778165 

  2. 2. Aiello LP , Avery RL , Arrigg PG , et al . Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders . N Engl J Med . 1994 ; 331 ( 22 ): 1480 ? 1487 . 7526212 

  3. 3. Zhang X , Bao S , Hambly BD , Gillies MC Vascular endothelial growth factor-A: a multifunctional molecular player in diabetic retinopathy . Int J Biochem Cell Biol . 2009 ; 41 ( 12 ): 2368 ? 2371 . 19646547 

  4. 4. Hayreh SS Neovascular glaucoma . Prog Retin Eye Res . 2007 ; 26 ( 5 ): 470 ? 485 . 17690002 

  5. 5. Wells JA , Glassman AR , Ayala AR , et al . Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema . N Engl J Med . 2015 ; 372 ( 6 ): 1193 ? 1203 . 25692915 

  6. 6. CATT Research Group . Ranibizumab and bevacizumab for neovascular age-related macular degeneration . N Engl J Med . 2011 ; 364 ( 20 ): 1897 ? 1908 . 21526923 

  7. 7. Brown DM , Wykoff CC Intravitreal aflibercept for proliferative diabetic retinopathy . Lancet . 2017 ; 390 ( 10108 ): 2140 ? 2141 . 

  8. 8. Bressler SB , Liu D , Glassman AR , et al . Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab . JAMA Ophthalmol . 2017 ; 135 ( 6 ): 558 ? 568 . 28448655 

  9. 9. Ross EL , Hutton DW , Stein JD , et al . Cost-effectiveness of aflibercept, bevacizumab, and ranibizumab for diabetic macular edema treatment: analysis from the Diabetic Retinopathy Clinical Research Network Comparative Effectiveness Trial . JAMA Ophthalmol . 2016 ; 134 ( 8 ): 888 ? 896 . 27280850 

  10. 10. Heier JS , Brown DM , Chong V , et al . Intravitreal aflibercept (VEGF Trap-Eye) in wet age-related macular degeneration . Ophthalmology . 2012 ; 119 ( 12 ): 2537 ? 2548 . 23084240 

  11. 11. Bressler SB Introduction: understanding the role of angiogenesis and antiangiogenic agents in age-related macular degeneration . Ophthalmology . 2009 ; 116 ( 10, suppl ): S1 ? S7 . 19800534 

  12. 12. Park SJ , Oh J , Kim YK , et al . Intraocular pharmacokinetics of intravitreal vascular endothelial growth factor-Trap in a rabbit model . Eye (Lond) . 2015 ; 29 ( 4 ): 561 ? 568 . 25592118 

  13. 13. Stewart MW , Rosenfeld PJ Predicted biological activity of intravitreal VEGF Trap . Br J Ophthalmol . 2008 ; 92 ( 5 ): 667 ? 668 . 18356264 

  14. 14. Clarke JM , Hurwitz HI Ziv-aflibercept: binding to more than VEGF-A?does more matter? Nat Rev Clin Oncol . 2013 ; 10 ( 1 ): 10 ? 11 . 23149898 

  15. 15. Cao Y Positive and negative modulation of angiogenesis by VEGFR1 ligands . Sci Signal . 2009 ; 2 ( 59 ): re1 . 19244214 

  16. 16. Holash J , Davis S , Papadopoulos N , et al . VEGF-Trap: a VEGF blocker with potent antitumor effects . Proc Natl Acad Sci USA . 2002 ; 99 ( 17 ): 11393 ? 11398 . 12177445 

  17. 17. Lee JE , Kim C , Yang H , et al . Novel glycosylated VEGF decoy receptor fusion protein, VEGF-Grab, efficiently suppresses tumor angiogenesis and progression . Mol Cancer Ther . 2015 ; 14 ( 2 ): 470 ? 479 . 25534360 

  18. 18. Koh YJ , Kim HZ , Hwang SI , et al . Double antiangiogenic protein, DAAP, targeting VEGF-A and angiopoietins in tumor angiogenesis, metastasis, and vascular leakage . Cancer Cell . 2010 ; 18 ( 2 ): 171 ? 184 . 20708158 

  19. 19. Kim C , Yang H , Fukushima Y , et al . Vascular RhoJ is an effective and selective target for tumor angiogenesis and vascular disruption . Cancer Cell . 2014 ; 25 ( 1 ): 102 ? 117 . 24434213 

  20. 20. Park JR , Choi W , Hong HK , et al . Imaging laser-induced choroidal neovascularization in the rodent retina using optical coherence tomography angiography . Invest Ophthalmol Vis Sci . 2016 ; 57 ( 9 ): OCT331 ? OCT340 . 27409490 

  21. 21. Lee J , Ryoo NK , Han H , et al . Anti-VEGF polysiRNA polyplex for the treatment of choroidal neovascularization . Mol Pharm . 2016 ; 13 ( 6 ): 1988 ? 1995 . 27173745 

  22. 22. Connor KM , Krah NM , Dennison RJ , et al . Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis . Nat Protoc . 2009 ; 4 ( 11 ): 1565 ? 1573 . 19816419 

  23. 23. Lambert V , Lecomte J , Hansen S , et al . Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice . Nat Protoc . 2013 ; 8 ( 11 ): 2197 ? 2211 . 24136346 

  24. 24. Olsson AK , Dimberg A , Kreuger J , Claesson-Welsh L VEGF receptor signalling - in control of vascular function . Nat Rev Mol Cell Biol . 2006 ; 7 ( 5 ): 359 ? 371 . 16633338 

  25. 25. Papadopoulos N , Martin J , Ruan Q , et al . Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab . Angiogenesis . 2012 ; 15 ( 2 ): 171 ? 185 . 22302382 

  26. 26. Tokunaga CC , Mitton KP , Dailey W , et al . Effects of anti-VEGF treatment on the recovery of the developing retina following oxygen-induced retinopathy . Invest Ophthalmol Vis Sci . 2014 ; 55 ( 3 ): 1884 ? 1892 . 24550366 

  27. 27. Nakao S , Arima M , Ishikawa K , et al . Intravitreal anti-VEGF therapy blocks inflammatory cell infiltration and re-entry into the circulation in retinal angiogenesis . Invest Ophthalmol Vis Sci . 2012 ; 53 ( 7 ): 4323 ? 4328 . 22661475 

  28. 28. Smith LE , Wesolowski E , McLellan A , et al . Oxygen-induced retinopathy in the mouse . Invest Ophthalmol Vis Sci . 1994 ; 35 ( 1 ): 101 ? 111 . 7507904 

  29. 29. Jo DH , Cho CS , Kim JH , Jun HO , Kim JH Animal models of diabetic retinopathy: doors to investigate pathogenesis and potential therapeutics . J Biomed Sci . 2013 ; 20 ( 1 ): 38 . 23786217 

  30. 30. Glassman AR Results of a randomized clinical trial of aflibercept vs panretinal photocoagulation for proliferative diabetic retinopathy: is it time to retire your laser? JAMA Ophthalmol . 2017 ; 135 ( 7 ): 685 ? 686 . 28570733 

  31. 31. Sivaprasad S , Prevost AT , Vasconcelos JC , et al . Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial . Lancet . 2017 ; 389 ( 10085 ): 2193 ? 2203 . 28494920 

  32. 32. Sivaprasad S , Prevost AT , Bainbridge J , et al . Clinical efficacy and mechanistic evaluation of aflibercept for proliferative diabetic retinopathy (acronym CLARITY): a multicentre phase IIb randomised active-controlled clinical trial . BMJ Open . 2015 ; 5 ( 9 ): e008405 . 

  33. 33. Salman AG , Said AM Structural, visual and refractive outcomes of intravitreal aflibercept injection in high-risk prethreshold type 1 retinopathy of prematurity . Ophthalmic Res . 2015 ; 53 ( 1 ): 15 ? 20 . 25471087 

  34. 34. Bai Y , Nie H , Wei S , et al . Efficacy of intravitreal conbercept injection in the treatment of retinopathy of prematurity . Br J Ophthalmol . 2019 ; 103 ( 4 ): 494 ? 498 . 30030391 

  35. 35. Grossniklaus HE , Kang SJ , Berglin L Animal models of choroidal and retinal neovascularization . Prog Retin Eye Res . 2010 ; 29 ( 6 ): 500 ? 519 . 20488255 

  36. 36. Shah RS , Soetikno BT , Lajko M , Fawzi AA A mouse model for laser-induced choroidal neovascularization . J Vis Exp . 2015 ; 106 : e53502 . 

  37. 37. Feiner L , Barr EE , Shui YB , Holekamp NM , Brantley MA Jr Safety of intravitreal injection of bevacizumab in rabbit eyes . Retina . 2006 ; 26 ( 8 ): 882 ? 888 . 17031287 

  38. 38. Wang J , Lei C , Tao L , et al . A safety study of high concentration and high frequency intravitreal injection of conbercept in rabbits . Sci Rep . 2017 ; 7 ( 1 ): 592 . 28377591 

  39. 39. de Oliveira Dias JR , Badaro E , Novais EA , et al . Preclinical investigations of intravitreal ziv-aflibercept . Ophthalmic Surg Lasers Imaging Retina . 2014 ; 45 ( 6 ): 577 ? 584 . 25423640 

  40. 40. Lee WK , Iida T , Ogura Y , et al . Efficacy and safety of intravitreal aflibercept for polypoidal choroidal vasculopathy in the PLANET study: a randomized clinical trial . JAMA Ophthalmology . 2018 ; 136 ( 7 ): 786 ? 793 . 29801063 

  41. 41. Yannuzzi NA , Sridhar J , Chang JS , Lin J , Kuriyan AE , Smiddy WE Cost evaluation of laser versus intravitreal aflibercept for proliferative diabetic retinopathy . Ophthalmology . 2018 ; 125 ( 7 ): 1121 ? 1122 . 29571831 

  42. 42. Cai S , Yang Q , Li X , Zhang Y The efficacy and safety of aflibercept and conbercept in diabetic macular edema . Drug Des Devel Ther . 2018 ; 12 : 3471 ? 3483 . 

  43. 43. Cui J , Sun D , Lu H , et al . Comparison of effectiveness and safety between conbercept and ranibizumab for treatment of neovascular age-related macular degeneration. A retrospective case-controlled non-inferiority multiple center study . Eye (Lond) . 2018 ; 32 ( 2 ): 391 ? 399 . 28937147 

  44. 44. Wang Q , Li T , Wu Z , et al . Novel VEGF decoy receptor fusion protein conbercept targeting multiple VEGF isoforms provide remarkable anti-angiogenesis effect in vivo . PLoS One . 2013 ; 8 ( 8 ): e70544 . 23950958 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로