최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Viruses, v.13 no.2, 2021년, pp.237 -
Shin, Hye Jin (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea) , Ku, Keun Bon (shinhy@krict.re.kr (H.J.S.)) , Kim, Soojin (kbku@krict.re.kr (K.B.K.)) , Kim, Heon Seok (btkim@krict.re.kr (B.-T.K.)) , Kim, Yeon-Soo (Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea) , Kim, Bum-Tae (shinhy@krict.re.kr (H.J.S.)) , Kim, Seong-Jun (kbku@krict.re.kr (K.B.K.)) , Kim, Chonsaeng (btkim@krict.re.kr (B.-T.K.))
Genetic screens using CRISPR/Cas9 have been exploited to discover host–virus interactions. These screens have identified viral dependencies on host proteins during their life cycle and potential antiviral strategies. The acyl-CoA binding domain containing 3 (ACBD3) was identified as an essent...
1. Cho S.W. Kim S. Kim J.M. Kim J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease Nat. Biotechnol. 2013 31 230 232 10.1038/nbt.2507 23360966
2. Cong L. Ran F.A. Cox D. Lin S. Barretto R. Habib N. Hsu P.D. Wu X. Jiang W. Marraffini L.A. Multiplex genome engineering using CRISPR/Cas systems Science 2013 339 819 823 10.1126/science.1231143 23287718
3. Mali P. Yang L. Esvelt K.M. Aach J. Guell M. DiCarlo J.E. Norville J.E. Church G.M. RNA-guided human genome engineering via Cas9 Science 2013 339 823 826 10.1126/science.1232033 23287722
4. Koike-Yusa H. Li Y. Tan E.P. Velasco-Herrera Mdel C. Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library Nat. Biotechnol. 2014 32 267 273 10.1038/nbt.2800 24535568
5. Shalem O. Sanjana N.E. Hartenian E. Shi X. Scott D.A. Mikkelson T. Heckl D. Ebert B.L. Root D.E. Doench J.G. Genome-scale CRISPR-Cas9 knockout screening in human cells Science 2014 343 84 87 10.1126/science.1247005 24336571
6. Rodriguez-Rodriguez D.R. Ramirez-Solis R. Garza-Elizondo M.A. Garza-Rodriguez M.L. Barrera-Saldana H.A. Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review) Int. J. Mol. Med. 2019 43 1559 1574 10.3892/ijmm.2019.4112 30816503
8. Xu C.L. Ruan M.Z.C. Mahajan V.B. Tsang S.H. Viral Delivery Systems for CRISPR Viruses 2019 11 28 10.3390/v11010028
9. Alexander I.E. Russell D.W. Spence A.M. Miller A.D. Effects of gamma irradiation on the transduction of dividing and nondividing cells in brain and muscle of rats by adeno-associated virus vectors Hum. Gene Ther. 1996 7 841 850 10.1089/hum.1996.7.7-841 8860836
10. Nakai H. Yant S.R. Storm T.A. Fuess S. Meuse L. Kay M.A. Extrachromosomal recombinant adeno-associated virus vector genomes are primarily responsible for stable liver transduction in vivo J. Virol. 2001 75 6969 6976 10.1128/JVI.75.15.6969-6976.2001 11435577
11. High K.A. Roncarolo M.G. Gene Therapy N. Engl. J. Med. 2019 381 455 464 10.1056/NEJMra1706910 31365802
12. Senis E. Fatouros C. Grosse S. Wiedtke E. Niopek D. Mueller A.K. Borner K. Grimm D. CRISPR/Cas9-mediated genome engineering: An adeno-associated viral (AAV) vector toolbox Biotechnol. J. 2014 9 1402 1412 10.1002/biot.201400046 25186301
13. McCarty D.M. Fu H. Monahan P.E. Toulson C.E. Naik P. Samulski R.J. Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo Gene Ther. 2003 10 2112 2118 10.1038/sj.gt.3302134 14625565
14. Wang Z. Ma H.I. Li J. Sun L. Zhang J. Xiao X. Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo Gene Ther. 2003 10 2105 2111 10.1038/sj.gt.3302133 14625564
15. McCarty D.M. Self-complementary AAV vectors; advances and applications Mol. Ther. J. Am. Soc. Gene Ther. 2008 16 1648 1656 10.1038/mt.2008.171 18682697
16. Platt R.J. Chen S. Zhou Y. Yim M.J. Swiech L. Kempton H.R. Dahlman J.E. Parnas O. Eisenhaure T.M. Jovanovic M. CRISPR-Cas9 knockin mice for genome editing and cancer modeling Cell 2014 159 440 455 10.1016/j.cell.2014.09.014 25263330
17. Tschaharganeh D.F. Lowe S.W. Garippa R.J. Livshits G. Using CRISPR/Cas to study gene function and model disease in vivo FEBS J. 2016 283 3194 3203 10.1111/febs.13750 27149548
18. McDougall W.M. Perreira J.M. Reynolds E.C. Brass A.L. CRISPR genetic screens to discover host-virus interactions Curr. Opin. Virol. 2018 29 87 100 10.1016/j.coviro.2018.03.007 29684735
19. Kim H.S. Lee K. Bae S. Park J. Lee C.K. Kim M. Kim E. Kim S. Kim C. Kim J.S. CRISPR/Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection J. Biol. Chem. 2017 292 10664 10671 10.1074/jbc.M117.782425 28446605
20. Kim H.S. Lee K. Kim S.J. Cho S. Shin H.J. Kim C. Kim J.S. Arrayed CRISPR screen with image-based assay reliably uncovers host genes required for coxsackievirus infection Genome Res. 2018 28 859 868 10.1101/gr.230250.117 29712754
21. Teoule F. Brisac C. Pelletier I. Vidalain P.O. Jegouic S. Mirabelli C. Bessaud M. Combelas N. Autret A. Tangy F. The Golgi protein ACBD3, an interactor for poliovirus protein 3A, modulates poliovirus replication J. Virol. 2013 87 11031 11046 10.1128/JVI.00304-13 23926333
22. Dorobantu C.M. van der Schaar H.M. Ford L.A. Strating J.R. Ulferts R. Fang Y. Belov G. van Kuppeveld F.J. Recruitment of PI4KIIIbeta to coxsackievirus B3 replication organelles is independent of ACBD3, GBF1, and Arf1 J. Virol. 2014 88 2725 2736 10.1128/JVI.03650-13 24352456
23. Lei X. Xiao X. Zhang Z. Ma Y. Qi J. Wu C. Xiao Y. Zhou Z. He B. Wang J. The Golgi protein ACBD3 facilitates Enterovirus 71 replication by interacting with 3A Sci. Rep. 2017 7 44592 10.1038/srep44592 28303920
24. Horova V. Lyoo H. Rozycki B. Chalupska D. Smola M. Humpolickova J. Strating J. van Kuppeveld F.J.M. Boura E. Klima M. Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites PLoS Pathog. 2019 15 e1007962 10.1371/journal.ppat.1007962 31381608
25. Lyoo H. van der Schaar H.M. Dorobantu C.M. Rabouw H.H. Strating J. van Kuppeveld F.J.M. ACBD3 Is an Essential Pan-enterovirus Host Factor That Mediates the Interaction between Viral 3A Protein and Cellular Protein PI4KB mBio 2019 10 10.1128/mBio.02742-18 30755512
26. Sasaki J. Ishikawa K. Arita M. Taniguchi K. ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites EMBO J. 2012 31 754 766 10.1038/emboj.2011.429 22124328
27. Kallewaard N.L. Zhang L. Chen J.W. Guttenberg M. Sanchez M.D. Bergelson J.M. Tissue-specific deletion of the coxsackievirus and adenovirus receptor protects mice from virus-induced pancreatitis and myocarditis Cell Host Microbe 2009 6 91 98 10.1016/j.chom.2009.05.018 19616768
28. Rehwinkel J. Mouse knockout models for HIV-1 restriction factors Cell. Mol. Life Sci. CMLS 2014 71 3749 3766 10.1007/s00018-014-1646-8 24854580
29. Tarnow C. Engels G. Arendt A. Schwalm F. Sediri H. Preuss A. Nelson P.S. Garten W. Klenk H.D. Gabriel G. TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice J. Virol. 2014 88 4744 4751 10.1128/JVI.03799-13 24522916
30. Qiao Y. Yan Y. Tan K.S. Tan S.S.L. Seet J.E. Arumugam T.V. Chow V.T.K. Wang Y. Tran T. CD151, a novel host factor of nuclear export signaling in influenza virus infection J. Allergy Clin. Immunol. 2018 141 1799 1817 10.1016/j.jaci.2017.11.032 29274410
31. Fan J. Liu J. Culty M. Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): An emerging signaling molecule Prog. Lipid Res. 2010 49 218 234 10.1016/j.plipres.2009.12.003 20043945
32. Mena I. Fischer C. Gebhard J.R. Perry C.M. Harkins S. Whitton J.L. Coxsackievirus infection of the pancreas: Evaluation of receptor expression, pathogenesis, and immunopathology Virology 2000 271 276 288 10.1006/viro.2000.0332 10860882
33. Wang Z. Zhu T. Rehman K.K. Bertera S. Zhang J. Chen C. Papworth G. Watkins S. Trucco M. Robbins P.D. Widespread and stable pancreatic gene transfer by adeno-associated virus vectors via different routes Diabetes 2006 55 875 884 10.2337/diabetes.55.04.06.db05-0927 16567506
34. Lim B.K. Yun S.H. Ju E.S. Kim B.K. Lee Y.J. Yoo D.K. Kim Y.C. Jeon E.S. Soluble coxsackievirus B3 3C protease inhibitor prevents cardiomyopathy in an experimental chronic myocarditis murine model Virus Res. 2015 199 1 8 10.1016/j.virusres.2014.11.030 25485472
35. Park J. Bae S. Kim J.S. Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites Bioinformatics 2015 31 4014 4016 10.1093/bioinformatics/btv537 26358729
36. Cho S.W. Kim S. Kim Y. Kweon J. Kim H.S. Bae S. Kim J.S. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res. 2014 24 132 141 10.1101/gr.162339.113 24253446
37. Park J. Lim K. Kim J.S. Bae S. Cas-analyzer: An online tool for assessing genome editing results using NGS data Bioinformatics 2017 33 286 288 10.1093/bioinformatics/btw561 27559154
38. Kim J.H. Park J.B. Bae P.K. Kim H.S. Kim D.W. Ahn J.K. Lee C.K. Establishment and use of a cell line expressing HSV-1 thymidine kinase to characterize viral thymidine kinase-dependent drug-resistance Antivir. Res. 2002 54 163 174 10.1016/S0166-3542(01)00221-2 12062389
40. Kang H. Kim C. Kim D.E. Song J.H. Choi M. Choi K. Kang M. Lee K. Kim H.S. Shin J.S. Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses Antivir. Res 2015 124 1 10 10.1016/j.antiviral.2015.10.011 26526589
41. Greninger A.L. Knudsen G.M. Betegon M. Burlingame A.L. DeRisi J.L. ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding mBio 2013 4 e00098-13 10.1128/mBio.00098-13 23572552
42. Klima M. Toth D.J. Hexnerova R. Baumlova A. Chalupska D. Tykvart J. Rezabkova L. Sengupta N. Man P. Dubankova A. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein Sci. Rep. 2016 6 23641 10.1038/srep23641 27009356
43. Yue X. Qian Y. Gim B. Lee I. Acyl-CoA-Binding Domain-Containing 3 (ACBD3; PAP7; GCP60): A Multi-Functional Membrane Domain Organizer Int. J. Mol. Sci. 2019 20 2028 10.3390/ijms20082028 31022988
44. Dutta M. Robertson S.J. Okumura A. Scott D.P. Chang J. Weiss J.M. Sturdevant G.L. Feldmann F. Haddock E. Chiramel A.I. A Systems Approach Reveals MAVS Signaling in Myeloid Cells as Critical for Resistance to Ebola Virus in Murine Models of Infection Cell Rep. 2017 18 816 829 10.1016/j.celrep.2016.12.069 28099857
45. Gurumurthy C.B. Lloyd K.C.K. Generating mouse models for biomedical research: Technological advances Dis. Models Mech. 2019 12 10.1242/dmm.029462
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.