$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier-Stokes systems

Inventiones mathematicae, v.224 no.1, 2021년, pp.55 - 146  

Kang, Moon-Jin ,  Vasseur, Alexis F.

초록이 없습니다.

참고문헌 (53)

  1. L Ambrosio 2000 10.1093/oso/9780198502456.001.0001 Oxford mathematical monographs Functions of Bounded Variation and Free Discontinuity Problems Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford mathematical monographs. Oxford Press, Oxford (2000) 

  2. Ann. Math. S Bianchini 166 223 2005 10.4007/annals.2005.161.223 Bianchini, S., Bressan, A.: Vanishing viscosity solutions to nolinear hyperbolic systems. Ann. Math. 166, 223-342 (2005) 

  3. Commun. Math. Phys. D Bresch 238 211 2003 10.1007/s00220-003-0859-8 Bresch, D., Desjardins, B.: Existence of global weak solutions for 2d viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211-223 (2003) 

  4. J. Math. Pures Appl. D Bresch 86 9 362 2006 10.1016/j.matpur.2006.06.005 Bresch, D., Desjardins, B.: On the construction of approximate solutions for the 2d viscous shallow water model and for compressible navier-stokes models. J. Math. Pures Appl. 86(9), 362-368 (2006) 

  5. Comm. Partial Differ. Equ. D Bresch 28 843 2003 10.1081/PDE-120020499 Bresch, D., Desjardins, B., Lin, C.K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differ. Equ. 28, 843-868 (2003) 

  6. S Chapman 1970 The Mathematical Theory of Non-uniform Gases 3 Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, London (1970) 

  7. Commun. Math. Phys. G-Q Chen 228 2 201 2002 10.1007/s002200200615 Chen, G.-Q., Frid, H., Li, Y.: Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. Commun. Math. Phys. 228(2), 201-217 (2002) 

  8. Commun. Pure Appl. Math. G-Q Chen 63 11 1469 2010 10.1002/cpa.20332 Chen, G.-Q., Perepelitsa, M.: Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Commun. Pure Appl. Math. 63(11), 1469-1504 (2010) 

  9. J. Hyperbolic Differ. Equ. E Chiodaroli 11 3 493 2014 10.1142/S0219891614500143 Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(3), 493-519 (2014) 

  10. Commun. Pure Appl. Math. E Chiodaroli 68 7 1157 2015 10.1002/cpa.21537 Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157-1190 (2015) 

  11. Ann. Inst. H. Poincaré Anal. Non Linaire E Chiodaroli 32 1 225 2015 10.1016/j.anihpc.2013.11.005 Chiodaroli, E., Feireisl, E., Kreml, O.: On the weak solutions to the equations of a compressible heat conducting gas. Ann. Inst. H. Poincaré Anal. Non Linaire 32(1), 225-243 (2015) 

  12. Arch. Ration. Mech. Anal. E Chiodaroli 214 3 1019 2014 10.1007/s00205-014-0771-8 Chiodaroli, E., Kreml, O.: On the energy dissipation rate of solutions to the compressible isentropic Euler system. Arch. Ration. Mech. Anal. 214(3), 1019-1049 (2014) 

  13. Math. Mod. Meth. Appl. Sci. K Choi 30 387 2020 10.1142/S0218202520500104 Choi, K., Kang, M.-J., Kwon, Y.-S., Vasseur, A.: Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model. Math. Mod. Meth. Appl. Sci. 30, 387-437 (2020) 

  14. SIAM J. Math. Anal. K Choi 47 1405 2015 10.1137/140961523 Choi, K., Vasseur, A.: Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method. SIAM J. Math. Anal. 47, 1405-1418 (2015) 

  15. Ann. Inst. H. Poincaré Anal. Non Linéaire P Constantin 37 145 2020 10.1016/j.anihpc.2019.04.001 Constantin, P., Drivas, T.D., Nguyen, H.Q., Pasqualotto, F.: Compressible fluids and active potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 37, 145-180 (2020) 

  16. Arch. Rational Mech. Anal. CM Dafermos 70 2 167 1979 10.1007/BF00250353 Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70(2), 167-179 (1979) 

  17. Ann. Math. C De Lellis 170 3 1417 2009 10.4007/annals.2009.170.1417 De Lellis, C., Székelyhidi, L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417-1436 (2009) 

  18. Arch. Ration. Mech. Anal. C De Lellis 195 1 225 2010 10.1007/s00205-008-0201-x De Lellis, C., Székelyhidi, L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225-260 (2010) 

  19. Indiana Univ. Math. J. RJ DiPerna 28 1 137 1979 10.1512/iumj.1979.28.28011 DiPerna, R.J.: Uniqueness of solutions to hyperbolic conservation laws. Indiana Univ. Math. J. 28(1), 137-188 (1979) 

  20. Arch. Rational Mech. Anal. RJ DiPerna 82 1 27 1983 10.1007/BF00251724 DiPerna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82(1), 27-70 (1983) 

  21. Commun. Math. Phys. RJ DiPerna 91 1 1983 10.1007/BF01206047 DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91, 1-30 (1983) 

  22. 10.1090/cbms/074 Evans, L.C.: Weak convergence methods for nonlinear partial differential equations,. CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC 74, (1990) 

  23. Commun. Math. Sci. E Feireisl 14 6 1535 2016 10.4310/CMS.2016.v14.n6.a4 Feireisl, E.: Vanishing dissipation limit for the Navier-Stokes-Fourier system. Commun. Math. Sci. 14(6), 1535-1551 (2016) 

  24. Discrete Contin. Dyn. Syst. Ser. B J-F Gerbeau 1 1 89 2018 Gerbeau, J.-F., Perthame, B.: Derivation of viscous saint-venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1(1), 89-102 (2018) 

  25. Arch. Rational Mech. Anal. J Goodman 121 235 1992 10.1007/BF00410614 Goodman, J., Xin, Z.: Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch. Rational Mech. Anal. 121, 235-265 (1992) 

  26. Haspot, B.: New formulation of the compressible navier-stokes equations and parabolicity of the density,. arXiv:1411.5501 

  27. Hyperbolic Prob. Theory Numer. Appl. Methods Appl. Anal. B Haspot 20 2 141 2013 Haspot, B.: Porous media, fast diffusion equations and the existence of global weak solution for the quasi-solution of compressible Navier-Stokes equations. Hyperbolic Prob. Theory Numer. Appl. Methods Appl. Anal. 20(2), 141-164 (2013) 

  28. Haspot, B.: Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D,. posted on arXiv, (2014) 

  29. Commun. Math. Sci. B Haspot 15 3 587 2017 10.4310/CMS.2017.v15.n3.a1 Haspot, B.: Weak-strong uniqueness for compressible Navier-Stokes system with degenerate viscosity coefficient and vacuum in one dimension. Commun. Math. Sci. 15(3), 587-591 (2017) 

  30. Indiana Univ. Math. J. D Hoff 38 861 1989 10.1512/iumj.1989.38.38041 Hoff, D., Liu, T.P.: The inviscid limit for the Navier-Stokes equations of compressible isentropic flow with shock data. Indiana Univ. Math. J. 38, 861-915 (1989) 

  31. Kang, M.-J.: $$L^2$$-type contraction for shocks of scalar viscous conservation laws with strictly convex flux. J. Math. Pures Appl. (To appear) 

  32. Kinet. Relat. Models M-J Kang 11 1 107 2018 10.3934/krm.2018006 Kang, M.-J.: Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics. Kinet. Relat. Models 11(1), 107-118 (2018) 

  33. Kang, M.-J., Vasseur, A.: Contraction property for large perturbations of shocks of the barotropic Navier-Stokes system. J. Eur. Math. Soc. (JEMS), To appear. https://arxiv.org/pdf/1712.07348.pdf 

  34. Arch. Ration. Mech. Anal. M-J Kang 222 1 343 2016 10.1007/s00205-016-1003-1 Kang, M.-J., Vasseur, A.: Criteria on contractions for entropic discontinuities of systems of conservation laws. Arch. Ration. Mech. Anal. 222(1), 343-391 (2016) 

  35. Annales de l’Institut Henri Poincaré (C) : Analyse non linéaire M-J Kang 34 1 139 2017 10.1016/j.anihpc.2015.10.004 Kang, M.-J., Vasseur, A.: $$L^2$$-contraction for shock waves of scalar viscous conservation laws. Annales de l’Institut Henri Poincaré (C) : Analyse non linéaire 34(1), 139-156 (2017) 

  36. J. Nonlinear Sci. M-J Kang 30 1703 2020 10.1007/s00332-020-09622-z Kang, M.-J., Vasseur, A.: Global smooth solutions for 1D barotropic Navier-Stokes equations with a large class of degenerate viscosities. J. Nonlinear Sci. 30, 1703-1721 (2020) 

  37. J. Differ. Equ. M-J Kang 267 2737 2019 10.1016/j.jde.2019.03.030 Kang, M.-J., Vasseur, A., Wang, Y.: $$L^2$$-contraction for planar shock waves of multi-dimensional scalar viscous conservation laws. J. Differ. Equ. 267, 2737-2791 (2019) 

  38. Arch. Ration. Mech. Anal. N Leger 199 3 761 2011 10.1007/s00205-010-0341-7 Leger, N.: $$L^2$$ stability estimates for shock solutions of scalar conservation laws using the relative entropy method. Arch. Ration. Mech. Anal. 199(3), 761-778 (2011) 

  39. Arch. Ration. Mech. Anal. N Leger 201 1 271 2011 10.1007/s00205-011-0431-1 Leger, N., Vasseur, A.: Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal. 201(1), 271-302 (2011) 

  40. Methods Appl. Anal. A Matsumura 17 279 2010 10.4310/MAA.2010.v17.n3.a3 Matsumura, A., Wang, Y.: Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density dependent viscosity. Methods Appl. Anal. 17, 279-290 (2010) 

  41. 10.1137/060658199 Mellet, A., Vasseur, A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal. 39(4):1344-1365 (2007/2008) 

  42. J. Éc. Polytech. Math. D Serre 1 1 2014 10.5802/jep.1 Serre, D., Vasseur, A.: $$L^2$$-type contraction for systems of conservation laws. J. Éc. Polytech. Math. 1, 1-28 (2014) 

  43. Contemp. Math. AMS D Serre 658 237 2016 10.1090/conm/658/13123 Serre, D., Vasseur, A.: About the relative entropy method for hyperbolic systems of conservation laws. Contemp. Math. AMS 658, 237-248 (2016) 

  44. Discrete Contin. Dyn. Syst. D Serre 36 8 4569 2016 10.3934/dcds.2016.36.4569 Serre, D., Vasseur, A.: The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete Contin. Dyn. Syst. 36(8), 4569-4577 (2016) 

  45. 10.1016/0021-8928(84)90031-5 Shelukhin, V.V.: On the structure of generalized solutions of the one-dimensional equations of a polytropic viscous gas. J. Appl. Math. Mech., 48(1984), 665-672 

  46. translated from Prikl. Mat. Mekh. 48(6), 912-920 (1984) 

  47. Philos. Mag. GG Stokes 33 349 1848 Stokes, G.G.: On a difficulty in the theory of sound. Philos. Mag. 33, 349-356 (1848) 

  48. Comm. Partial Differ. Equ. A Vasseur 24 11-12 1987 1999 10.1080/03605309908821491 Vasseur, A.: Time regularity for the system of isentropic gas dynamics with $$\gamma =3$$. Comm. Partial Differ. Equ. 24(11-12), 1987-1997 (1999) 

  49. 10.1016/S1874-5717(08)00007-8 Vasseur, A.: Recent results on hydrodynamic limits. In: Handbook of differential equations: evolutionary equations. Vol. IV, Handbook Differential Equation, pp. 323-376. Elsevier/North-Holland, Amsterdam, (2008) 

  50. 10.1090/conm/666/13296 Vasseur, A.: Relative entropy and contraction for extremal shocks of conservation laws up to a shift. In: Recent advances in partial differential equations and applications, volume 666 of Contemporary Mathematics, pages 385-404. American Mathematical Society, Providence, RI, (2016) 

  51. SIAM J. Math. Anal. A Vasseur 47 6 4350 2015 10.1137/15M1023439 Vasseur, A., Wang, Y.: The inviscid limit to a contact discontinuity for the compressible navier-stokes-fourier system using the relative entropy method. SIAM J. Math. Anal. 47(6), 4350-4359 (2015) 

  52. Commun. Math. Sci. A Vasseur 14 8 2215 2016 10.4310/CMS.2016.v14.n8.a5 Vasseur, A., Yao, L.: Nonlinear stability of viscous shock wave to one-dimensional compressible isentropic Navier-Stokes equations with density dependent viscous coefficient. Commun. Math. Sci. 14(8), 2215-2228 (2016) 

  53. Arch. Rational Mech. Anal. SH Yu 146 275 1999 10.1007/s002050050143 Yu, S.H.: Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. Arch. Rational Mech. Anal. 146, 275-370 (1999) 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로