최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Inventiones mathematicae, v.224 no.1, 2021년, pp.55 - 146
Kang, Moon-Jin , Vasseur, Alexis F.
초록이 없습니다.
L Ambrosio 2000 10.1093/oso/9780198502456.001.0001 Oxford mathematical monographs Functions of Bounded Variation and Free Discontinuity Problems Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford mathematical monographs. Oxford Press, Oxford (2000)
Commun. Math. Phys. D Bresch 238 211 2003 10.1007/s00220-003-0859-8 Bresch, D., Desjardins, B.: Existence of global weak solutions for 2d viscous shallow water equations and convergence to the quasi-geostrophic model. Commun. Math. Phys. 238, 211-223 (2003)
J. Math. Pures Appl. D Bresch 86 9 362 2006 10.1016/j.matpur.2006.06.005 Bresch, D., Desjardins, B.: On the construction of approximate solutions for the 2d viscous shallow water model and for compressible navier-stokes models. J. Math. Pures Appl. 86(9), 362-368 (2006)
Comm. Partial Differ. Equ. D Bresch 28 843 2003 10.1081/PDE-120020499 Bresch, D., Desjardins, B., Lin, C.K.: On some compressible fluid models: Korteweg, lubrication, and shallow water systems. Comm. Partial Differ. Equ. 28, 843-868 (2003)
S Chapman 1970 The Mathematical Theory of Non-uniform Gases 3 Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, London (1970)
Commun. Math. Phys. G-Q Chen 228 2 201 2002 10.1007/s002200200615 Chen, G.-Q., Frid, H., Li, Y.: Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. Commun. Math. Phys. 228(2), 201-217 (2002)
Commun. Pure Appl. Math. G-Q Chen 63 11 1469 2010 10.1002/cpa.20332 Chen, G.-Q., Perepelitsa, M.: Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow. Commun. Pure Appl. Math. 63(11), 1469-1504 (2010)
J. Hyperbolic Differ. Equ. E Chiodaroli 11 3 493 2014 10.1142/S0219891614500143 Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(3), 493-519 (2014)
Commun. Pure Appl. Math. E Chiodaroli 68 7 1157 2015 10.1002/cpa.21537 Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157-1190 (2015)
Ann. Inst. H. Poincaré Anal. Non Linaire E Chiodaroli 32 1 225 2015 10.1016/j.anihpc.2013.11.005 Chiodaroli, E., Feireisl, E., Kreml, O.: On the weak solutions to the equations of a compressible heat conducting gas. Ann. Inst. H. Poincaré Anal. Non Linaire 32(1), 225-243 (2015)
Arch. Ration. Mech. Anal. E Chiodaroli 214 3 1019 2014 10.1007/s00205-014-0771-8 Chiodaroli, E., Kreml, O.: On the energy dissipation rate of solutions to the compressible isentropic Euler system. Arch. Ration. Mech. Anal. 214(3), 1019-1049 (2014)
Math. Mod. Meth. Appl. Sci. K Choi 30 387 2020 10.1142/S0218202520500104 Choi, K., Kang, M.-J., Kwon, Y.-S., Vasseur, A.: Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model. Math. Mod. Meth. Appl. Sci. 30, 387-437 (2020)
SIAM J. Math. Anal. K Choi 47 1405 2015 10.1137/140961523 Choi, K., Vasseur, A.: Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method. SIAM J. Math. Anal. 47, 1405-1418 (2015)
Ann. Inst. H. Poincaré Anal. Non Linéaire P Constantin 37 145 2020 10.1016/j.anihpc.2019.04.001 Constantin, P., Drivas, T.D., Nguyen, H.Q., Pasqualotto, F.: Compressible fluids and active potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 37, 145-180 (2020)
Arch. Rational Mech. Anal. CM Dafermos 70 2 167 1979 10.1007/BF00250353 Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70(2), 167-179 (1979)
Ann. Math. C De Lellis 170 3 1417 2009 10.4007/annals.2009.170.1417 De Lellis, C., Székelyhidi, L.: The Euler equations as a differential inclusion. Ann. Math. 170(3), 1417-1436 (2009)
Arch. Ration. Mech. Anal. C De Lellis 195 1 225 2010 10.1007/s00205-008-0201-x De Lellis, C., Székelyhidi, L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225-260 (2010)
Arch. Rational Mech. Anal. RJ DiPerna 82 1 27 1983 10.1007/BF00251724 DiPerna, R.J.: Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal. 82(1), 27-70 (1983)
Commun. Math. Phys. RJ DiPerna 91 1 1983 10.1007/BF01206047 DiPerna, R.J.: Convergence of the viscosity method for isentropic gas dynamics. Commun. Math. Phys. 91, 1-30 (1983)
Commun. Math. Sci. E Feireisl 14 6 1535 2016 10.4310/CMS.2016.v14.n6.a4 Feireisl, E.: Vanishing dissipation limit for the Navier-Stokes-Fourier system. Commun. Math. Sci. 14(6), 1535-1551 (2016)
Discrete Contin. Dyn. Syst. Ser. B J-F Gerbeau 1 1 89 2018 Gerbeau, J.-F., Perthame, B.: Derivation of viscous saint-venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1(1), 89-102 (2018)
Arch. Rational Mech. Anal. J Goodman 121 235 1992 10.1007/BF00410614 Goodman, J., Xin, Z.: Viscous limits for piecewise smooth solutions to systems of conservation laws. Arch. Rational Mech. Anal. 121, 235-265 (1992)
Haspot, B.: New formulation of the compressible navier-stokes equations and parabolicity of the density,. arXiv:1411.5501
Hyperbolic Prob. Theory Numer. Appl. Methods Appl. Anal. B Haspot 20 2 141 2013 Haspot, B.: Porous media, fast diffusion equations and the existence of global weak solution for the quasi-solution of compressible Navier-Stokes equations. Hyperbolic Prob. Theory Numer. Appl. Methods Appl. Anal. 20(2), 141-164 (2013)
Haspot, B.: Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D,. posted on arXiv, (2014)
Commun. Math. Sci. B Haspot 15 3 587 2017 10.4310/CMS.2017.v15.n3.a1 Haspot, B.: Weak-strong uniqueness for compressible Navier-Stokes system with degenerate viscosity coefficient and vacuum in one dimension. Commun. Math. Sci. 15(3), 587-591 (2017)
Kang, M.-J.: $$L^2$$-type contraction for shocks of scalar viscous conservation laws with strictly convex flux. J. Math. Pures Appl. (To appear)
Kinet. Relat. Models M-J Kang 11 1 107 2018 10.3934/krm.2018006 Kang, M.-J.: Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics. Kinet. Relat. Models 11(1), 107-118 (2018)
Kang, M.-J., Vasseur, A.: Contraction property for large perturbations of shocks of the barotropic Navier-Stokes system. J. Eur. Math. Soc. (JEMS), To appear. https://arxiv.org/pdf/1712.07348.pdf
Arch. Ration. Mech. Anal. M-J Kang 222 1 343 2016 10.1007/s00205-016-1003-1 Kang, M.-J., Vasseur, A.: Criteria on contractions for entropic discontinuities of systems of conservation laws. Arch. Ration. Mech. Anal. 222(1), 343-391 (2016)
Annales de l’Institut Henri Poincaré (C) : Analyse non linéaire M-J Kang 34 1 139 2017 10.1016/j.anihpc.2015.10.004 Kang, M.-J., Vasseur, A.: $$L^2$$-contraction for shock waves of scalar viscous conservation laws. Annales de l’Institut Henri Poincaré (C) : Analyse non linéaire 34(1), 139-156 (2017)
J. Nonlinear Sci. M-J Kang 30 1703 2020 10.1007/s00332-020-09622-z Kang, M.-J., Vasseur, A.: Global smooth solutions for 1D barotropic Navier-Stokes equations with a large class of degenerate viscosities. J. Nonlinear Sci. 30, 1703-1721 (2020)
J. Differ. Equ. M-J Kang 267 2737 2019 10.1016/j.jde.2019.03.030 Kang, M.-J., Vasseur, A., Wang, Y.: $$L^2$$-contraction for planar shock waves of multi-dimensional scalar viscous conservation laws. J. Differ. Equ. 267, 2737-2791 (2019)
Arch. Ration. Mech. Anal. N Leger 199 3 761 2011 10.1007/s00205-010-0341-7 Leger, N.: $$L^2$$ stability estimates for shock solutions of scalar conservation laws using the relative entropy method. Arch. Ration. Mech. Anal. 199(3), 761-778 (2011)
Arch. Ration. Mech. Anal. N Leger 201 1 271 2011 10.1007/s00205-011-0431-1 Leger, N., Vasseur, A.: Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations. Arch. Ration. Mech. Anal. 201(1), 271-302 (2011)
10.1137/060658199 Mellet, A., Vasseur, A.: Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal. 39(4):1344-1365 (2007/2008)
J. Éc. Polytech. Math. D Serre 1 1 2014 10.5802/jep.1 Serre, D., Vasseur, A.: $$L^2$$-type contraction for systems of conservation laws. J. Éc. Polytech. Math. 1, 1-28 (2014)
Discrete Contin. Dyn. Syst. D Serre 36 8 4569 2016 10.3934/dcds.2016.36.4569 Serre, D., Vasseur, A.: The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete Contin. Dyn. Syst. 36(8), 4569-4577 (2016)
10.1016/0021-8928(84)90031-5 Shelukhin, V.V.: On the structure of generalized solutions of the one-dimensional equations of a polytropic viscous gas. J. Appl. Math. Mech., 48(1984), 665-672
translated from Prikl. Mat. Mekh. 48(6), 912-920 (1984)
Philos. Mag. GG Stokes 33 349 1848 Stokes, G.G.: On a difficulty in the theory of sound. Philos. Mag. 33, 349-356 (1848)
Comm. Partial Differ. Equ. A Vasseur 24 11-12 1987 1999 10.1080/03605309908821491 Vasseur, A.: Time regularity for the system of isentropic gas dynamics with $$\gamma =3$$. Comm. Partial Differ. Equ. 24(11-12), 1987-1997 (1999)
10.1090/conm/666/13296 Vasseur, A.: Relative entropy and contraction for extremal shocks of conservation laws up to a shift. In: Recent advances in partial differential equations and applications, volume 666 of Contemporary Mathematics, pages 385-404. American Mathematical Society, Providence, RI, (2016)
SIAM J. Math. Anal. A Vasseur 47 6 4350 2015 10.1137/15M1023439 Vasseur, A., Wang, Y.: The inviscid limit to a contact discontinuity for the compressible navier-stokes-fourier system using the relative entropy method. SIAM J. Math. Anal. 47(6), 4350-4359 (2015)
Commun. Math. Sci. A Vasseur 14 8 2215 2016 10.4310/CMS.2016.v14.n8.a5 Vasseur, A., Yao, L.: Nonlinear stability of viscous shock wave to one-dimensional compressible isentropic Navier-Stokes equations with density dependent viscous coefficient. Commun. Math. Sci. 14(8), 2215-2228 (2016)
Arch. Rational Mech. Anal. SH Yu 146 275 1999 10.1007/s002050050143 Yu, S.H.: Zero-dissipation limit of solutions with shocks for systems of hyperbolic conservation laws. Arch. Rational Mech. Anal. 146, 275-370 (1999)
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.