$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Augmented Ultrasonic Data for Machine Learning 원문보기

Journal of nondestructive evaluation, v.40 no.1, 2021년, pp.4 -   

Virkkunen, Iikka ,  Koskinen, Tuomas ,  Jessen-Juhler, Oskari ,  Rinta-aho, Jari

Abstract AI-Helper 아이콘AI-Helper

AbstractFlaw detection in non-destructive testing, especially for complex signals like ultrasonic data, has thus far relied heavily on the expertise and judgement of trained human inspectors. While automated systems have been used for a long time, these have mostly been limited to using simple decis...

참고문헌 (39)

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/ 

  2. Mater. Eval. J Aldrin 59 11 1313 2001 Aldrin, J., Achenbach, J., Andrew, G., P’an, C., Grills, B., Mullis, R., Spencer, F., Golis, M.: Case study for the implementation of an automated ultrasonic technique to detect fatigue cracks in aircraft weep holes. Mater. Eval. 59(11), 1313-1319 (2001) 

  3. Annis, C.: Mil-hdbk-1823a, nondestructive evaluation system reliability assessment. Tech. Rep. (2009). http://www.statisticalengineering.com/mh1823/MIL-HDBK-1823A(2009).pdf 

  4. ASTM: Standard practice for probability of detection analysis for hit/miss data. ASTM E2862-12. American Society for Testing and Materials, West Conshohocken (2012) 

  5. ASTM: Standard practice for probability of detection analysis for â versus a data. ASTM E3023-15. American Society for Testing and Materials, West Conshohocken (2015) 

  6. Bansal, M., Krizhevsky, A., Ogale, A.S.: Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst. CoRR (2018). arXiv:1812.03079 

  7. 10.1109/ICASSP.1993.319163 Chen, C.H., Lee, G.G.: Neural networks for ultrasonic NDE signal classification using time-frequency analysis. In: 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp 493-496 (1993) 

  8. F Chollet 2017 Deep Learning with Python 1 Chollet, F.: Deep Learning with Python, 1st edn. Manning Publications, Greenwich (2017) 

  9. 10.1109/cvpr.2017.195 Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/cvpr.2017.195 

  10. Chollet, F., et al.: Keras (2015). https://keras.io 

  11. Ultrasonics FC Cruz 73 1 2017 10.1016/j.ultras.2016.08.017 Cruz, F.C., Simas Filho, E.F., Albuquerque, M.C., Silva, I.C., Farias, C.T., Gouvea, L.L.: Efficient feature selection for neural network based detection of flaws in steel welded joints using ultrasound testing. Ultrasonics 73, 1-8 (2017). https://doi.org/10.1016/j.ultras.2016.08.017 

  12. Constr. Build. Mater. S Dorafshan 186 1031 2018 10.1016/j.conbuildmat.2018.08.011 Dorafshan, S., Thomas, R.J., Maguire, M.: Comparison of deep convolutional neural networks and edge detectors for image-based crack detection in concrete. Constr. Build. Mater. 186, 1031-1045 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.011 

  13. Russ. J. Nondestruct. Test. C Fei 42 3 190 2006 10.1134/s1061830906030077 Fei, C., Han, Z., Dong, J.: An ultrasonic flaw-classification system with wavelet-packet decomposition, a mutative scale chaotic genetic algorithm, and a support vector machine and its application to petroleum-transporting pipelines. Russ. J. Nondestruct. Test. 42(3), 190-197 (2006). https://doi.org/10.1134/s1061830906030077 

  14. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors (2012). arXiv:1207.0580 

  15. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR (2015). arXiv:1502.03167 

  16. J. Magn. Magn. Mater. S Kahrobaee 458 317 2018 10.1016/j.jmmm.2018.03.049 Kahrobaee, S., Haghighi, M.S., Akhlaghi, I.A.: Improving nondestructive characterization of dual phase steels using data fusion. J. Magn. Magn. Mater. 458, 317-326 (2018). https://doi.org/10.1016/j.jmmm.2018.03.049 

  17. Insight T Koskinen 60 1 42 2018 10.1784/insi.2018.60.1.42 Koskinen, T., Virkkunen, I., Papula, S., Sarikka, T., Haapalainen, J.: Producing a pod curve with emulated signal response data. Insight 60(1), 42-48 (2018). https://doi.org/10.1784/insi.2018.60.1.42 

  18. Commun. ACM A Krizhevsky 60 6 84 2017 10.1145/3065386 Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84-90 (2017). https://doi.org/10.1145/3065386 

  19. Nat. Commun. S Lapuschkin 10 1096 2019 10.1038/s41467-019-08987-4 Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019). https://doi.org/10.1038/s41467-019-08987-4 

  20. Comput. Methods Appl. Mech. Eng. S Liu 191 2831 2002 10.1016/S0045-7825(02)00221-9 Liu, S., Huang, J.H., Sung, J., Lee, C.: Detection of cracks using neural network and computational mechanics. Comput. Methods Appl. Mech. Eng. 191, 2831-2845 (2002) 

  21. Marcus, G.: Deep learning: a critical appraisal. CoRR (2018). arXiv:1801.00631 

  22. NDT & E Int. A Masnata 29 2 87 1996 10.1016/0963-8695(95)00053-4 Masnata, A., Sunser, M.: Neural network classification of flaws detected by ultrasonic means. NDT & E Int. 29(2), 87-93 (1996) 

  23. Neurocomputing M Meng 257 128 2017 10.1016/j.neucom.2016.11.066 Meng, M., Chua, Y.J., Wouterson, E., Ong, C.P.K.: Ultrasonic signal classification and imaging system for composite materials via deep convolutional neural networks. Neurocomputing 257, 128-135 (2017). https://doi.org/10.1016/j.neucom.2016.11.066 

  24. 10.1016/j.ultras.2018.12.001 Munir, N., Kim, H.J., Park, J., Song, S.J., Kang, S.S.: Convolutional neural network for ultrasonic weldment flaw classification in noisy conditions. Ultrasonics (2018). https://doi.org/10.1016/j.ultras.2018.12.001 

  25. J. Mech. Sci. Technol. N Munir 32 7 3073 2018 10.1007/s12206-018-0610-1 Munir, N., Kim, H.J., Song, S.J., Kang, S.S.: Investigation of deep neural network with drop out for ultrasonic flaw classification in weldments. J. Mech. Sci. Technol. 32(7), 3073-3080 (2018). https://doi.org/10.1007/s12206-018-0610-1 

  26. 10.1007/s10921-010-0086-0 Sambath, S., Nagaraj, P., Selvakumar, N.: Automatic defect classification in ultrasonic NDT using artificial intelligence. J. Nondestruct. Eval. 30(1), 20-28 (2010). https://doi.org/10.1007/s10921-010-0086-0 

  27. NDT & E Int. NJ Shipway 101 113 2019 10.1016/j.ndteint.2018.10.008 Shipway, N.J., Barden, T.J., Huthwaite, P., Lowe, M.J.S.: Automated defect detection for fluorescent penetrant inspection using random forest. NDT & E Int. 101, 113-123 (2019). https://doi.org/10.1016/j.ndteint.2018.10.008 

  28. Ultrasonics LC Silva 102 106057 2020 10.1016/j.ultras.2019.106057 Silva, L.C., Simas Filho, E.F., Albuquerque, M.C., Silva, I.C., Farias, C.T.: Segmented analysis of time-of-flight diffraction ultrasound for flaw detection in welded steel plates using extreme learning machines. Ultrasonics 102, 106057 (2020). https://doi.org/10.1016/j.ultras.2019.106057 

  29. Svahn, P.H., Virkkunen, I., Zettervall, T., Snögren, D.: The use of virtual flaws to increase flexibility of qualification. In: 12th European Conference on Non-Destructive Testing (ECNDT 2018), NDT.net, no. 8 in The e-Journal of Nondestructive Testing (2018) 

  30. Constr. Build. Mater. Z Tong 169 69 2018 10.1016/j.conbuildmat.2018.02.081 Tong, Z., Gao, J., Zhang, H.: Innovative method for recognizing subgrade defects based on a convolutional neural network. Constr. Build. Mater. 169, 69-82 (2018). https://doi.org/10.1016/j.conbuildmat.2018.02.081 

  31. Udpa, L., Ramuhalli, P.: Steam generator management program: Automated analysis of array probe eddy current data. Tech. Rep. 1018559, EPRI, Palo Alto, CA (2009) 

  32. Virkkunen, I., Ylitalo, M.: Practical experiences in pod determination for airframe et inspection. In: International Symposium on NDT in Aerospace, 03-11-2016-05-11-2016 (2016) 

  33. Virkkunen, I., Miettinen, K., Packalén, T.: Virtual flaws for nde training and qualification. In: 11th European Conference on Non-Destructive Testing (ECNDT 2014) (2014) 

  34. Virkkunen, I., Rönneteg, U., Grybäck, T., Emilsson, G., Miettinen, K.: Feasibility study of using eflaws on qualification of nuclear spent fuel disposal canister inspection. http://www.12thnde.com. In: International Conference on Non Destructive Evaluation in Relation to Structural Integrity for Nuclear and Pressurized Components, 04-10-2016-06-10-2016 (2016) 

  35. Virkkunen, I., Haapalainen, J., Papula, S., Sarikka, T., Kotamies, J., Hänninen, H.: Effect of feedback and variation on inspection reliability. In: 7th European-American Workshop on Reliability of NDE, German Society for Non-Destructive Testing (2017). https://www.ndt.net/article/reliability2017/papers/12.pdf 

  36. KSMME Ent. J. W Yi 12 6 1150 1998 Yi, W., Is, Yun: The defect detection and non-destructive evaluation in weld zone of austenitic stainless steel 304 using neural network-ultrasonic wave. KSMME Ent. J. 12(6), 1150-1161 (1998) 

  37. Zeiler, M.D.: Adadelta: an adaptive learning rate method (2012). arXiv:1212.5701 

  38. IEEE Trans. Pattern Anal. Mach. Intell. X Zhang 38 10 1943 2016 10.1109/TPAMI.2015.2502579 Zhang, X., Zou, J., He, K., Sun, J.: Accelerating very deep convolutional networks for classification and detection. IEEE Trans. Pattern Anal. Mach. Intell. 38(10), 1943-1955 (2016). https://doi.org/10.1109/TPAMI.2015.2502579 

  39. NDT & E Int. P Zhu 101 104 2019 10.1016/j.ndteint.2018.09.010 Zhu, P., Cheng, Y., Banerjee, P., Tamburrino, A., Deng, Y.: A novel machine learning model for eddy current testing with uncertainty. NDT & E Int. 101, 104-112 (2019). https://doi.org/10.1016/j.ndteint.2018.09.010 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로