$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Performance and Reuse of Steel Shot in Abrasive Waterjet Cutting of Granite 원문보기

Rock mechanics and rock engineering, v.54 no.3, 2021년, pp.1551 - 1563  

Cha, Yohan ,  Oh, Tae-Min ,  Joo, Gun-Wook ,  Cho, Gye-Chun

Abstract AI-Helper 아이콘AI-Helper

AbstractSteel shots are suitable for abrasive waterjet rock cutting and recycling because of the high hardness and magnetic properties of steel. This study evaluated the rock-cutting performance and recycling characteristics of steel shot waterjet. The rock-cutting responses of steel shot and garnet...

참고문헌 (40)

  1. ASTM (2007) D422-63: standard test method for particle-size analysis of soils. ASTM International West Conshohocken 

  2. ASTM (2009) D6913-04: Standard test methods for particle size distribution (gradation) of soils using sieve analysis ASTM International West Conshohocken 

  3. ASTM (2014) D7012-14: Standard test method for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures, ASTM International, West Conshohocken, Pa., doi ASTM International West Conshohocken 

  4. Mater Manuf Process M Ay 25 1160 2010 10.1080/10426914.2010.502953 Ay M, Çaydaş U, Hasçalik A (2010) Effect of traverse speed on abrasive waterjet machining of age hardened Inconel 718 nickel-based superalloy. Mater Manuf Process 25:1160-1165 

  5. Arab J Geosci G Aydin 7 4425 2014 10.1007/s12517-013-1113-0 Aydin G (2014) Recycling of abrasives in abrasive water jet cutting with different types of granite. Arab J Geosci 7:4425-4435 

  6. J Central South Univ G Aydin 22 1055 2015 10.1007/s11771-015-2616-5 Aydin G (2015) Performance of recycling abrasives in rock cutting by abrasive water jet. J Central South Univ 22:1055-1061 

  7. Intern J Adv Manuf Technol MK Babu 19 697 2002 10.1007/s001700200115 Babu MK, Chetty OK (2002) Studies on recharging of abrasives in abrasive water jet machining. Intern J Adv Manuf Technol 19:697-703 

  8. Wear MK Babu 254 763 2003 10.1016/S0043-1648(03)00256-4 Babu MK, Chetty OK (2003) A study on recycling of abrasives in abrasive water jet machining. Wear 254:763-773 

  9. ET Brown 1981 Rock characterization testing and monitoring Brown ET (1981) Rock characterization testing and monitoring. Pergamon Press, UK 

  10. Capello E, Groppetti R (1993) On a simplified model for hydro abrasive jet machining prediction, control and optimization. In: Proceedings of the 7th American Water Jet Conference, pp. 157-174 

  11. Appl Sci Y Cha 9 4234 2019 10.3390/app9204234 Cha Y, Oh T-M, Cho G-C (2019) Waterjet erosion model for rock-like material considering properties of abrasive and target materials. Appl Sci 9:4234. https://doi.org/10.3390/app9204234 

  12. Adv Civil Eng Y Cha 2020 1 2020 10.1155/2020/1650914 Cha Y, Oh T-M, Cho G-C (2020) Effects of focus geometry on the hard rock-cutting performance of an abrasive waterjet. Adv Civil Eng 2020:1-13 

  13. Chetty O, Babu R (1999) Some investigations on abrasives in abrasives waterjet machining. In: Proceeding of 10th American waterjet conference, Waterjet Technology Association, USA, 1999. pp 419-430 

  14. 10.1115/1.2812383 Daniewicz S, Cummings S (1999) Characterization of a water peening process 

  15. Intern J Adv Manuf Technol A El-Domiaty 13 172 1997 10.1007/BF01305869 El-Domiaty A, Abdel-Rahman A (1997) Fracture mechanics-based model of abrasive waterjet cutting for brittle materials. Intern J Adv Manuf Technol 13:172-181 

  16. Proc R Soc Lond A Math Phys Sci AG Evans 361 343 1978 Evans AG, Gulden M, Rosenblatt M (1978) Impact damage in brittle materials in the elastic-plastic response regime. Proc R Soc Lond A Math Phys Sci 361:343-365 

  17. Wear I Finnie 3 87 1960 10.1016/0043-1648(60)90055-7 Finnie I (1960) Erosion of surfaces by solid particles. Wear 3:87-103 

  18. Wear G Fowler 266 613 2009 10.1016/j.wear.2008.06.013 Fowler G, Pashby IR, Shipway PH (2009) The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear 266:613-620. https://doi.org/10.1016/j.wear.2008.06.013 

  19. G Galecki 371 1992 Jet cutting technology 10.1007/978-94-011-2678-6_25 Galecki G, Summers D (1992) Steel shot entrained ultra high pressure waterjet for cutting and drilling in hard rocks. Jet cutting technology. Springer, Berlin, pp 371-388 

  20. N Guo 503 1992 Jet cutting technology 10.1007/978-94-011-2678-6_34 Guo N, Louis H, Meier G, Ohlsen J (1992) Recycling capacity of abrasives in abrasive water jet cutting. Jet cutting technology. Springer, Berlin, pp 503-523 

  21. Mater Design A Hascalik 28 1953 2007 10.1016/j.matdes.2006.04.020 Hascalik A, Çaydaş U, Gürün H (2007) Effect of traverse speed on abrasive waterjet machining of Ti-6Al-4V alloy. Mater Design 28:1953-1957 

  22. Mach J Eng Mater Technol M Hashish 111 154 1989 10.1115/1.3226448 Hashish M (1989) A model for abrasive-waterjet (AWJ). Mach J Eng Mater Technol 111:154-162. https://doi.org/10.1115/1.3226448 

  23. Hashish M (2011) AWJ cutting with reduced abrasive consumption. In: Proceeding of the American Water Jet Conference, Houston, USA, Paper A 

  24. Theoret Appl Mech P Jankovic 40 277 2013 10.2298/tam1302277j Jankovic P, Igic T, Nikodijevic D (2013) Process parameters effect on material removal mechanism and cut quality of abrasive water jet machining. Theoret Appl Mech 40:277-291. https://doi.org/10.2298/tam1302277j 

  25. Soc Petrol Eng AIME Paper No SPE WC Maurer 2434 213 1969 Maurer WC, Joe KH (1969) Hydraulic jet drilling. Soc Petrol Eng AIME Paper No SPE 2434:213-224 

  26. Theor Appl Fract Mech A Momber 35 19 2001 10.1016/S0167-8442(00)00046-X Momber A (2001) Stress-strain relation for water-driven particle erosion of quasi-brittle materials. Theor Appl Fract Mech 35:19-37 

  27. Int J Rock Mech Min Sci AW Momber 41 51 2004 10.1016/s1365-1609(03)00075-3 Momber AW (2004) Wear of rocks by water flow. Int J Rock Mech Min Sci 41:51-68. https://doi.org/10.1016/s1365-1609(03)00075-3 

  28. Asme-Publications-Htd A Momber 321 555 1995 Momber A, Kovacevic R (1995) Energy dissipative processes in high speed water-solid particle erosion. Asme-Publications-Htd 321:555-564 

  29. AW Momber 2012 Principles of abrasive water jet machining Momber AW, Kovacevic R (2012) Principles of abrasive water jet machining. Springer Science & Business Media, Germany 

  30. Rock Mech Rock Eng T-M Oh 47 745 2013 10.1007/s00603-013-0434-3 Oh T-M, Cho G-C (2013) Characterization of effective parameters in abrasive waterjet rock cutting. Rock Mech Rock Eng 47:745-756. https://doi.org/10.1007/s00603-013-0434-3 

  31. Rock Mech Rock Eng T-M Oh 49 1059 2015 10.1007/s00603-015-0778-y Oh T-M, Cho G-C (2015) Rock cutting depth model based on kinetic energy of abrasive waterjet. Rock Mech Rock Eng 49:1059-1072. https://doi.org/10.1007/s00603-015-0778-y 

  32. Dyna A Perec 84 249 2017 10.15446/dyna.v84n203.62592 Perec A (2017) Disintegration and recycling possibility of selected abrasives for water jet cutting. Dyna 84:249-256 

  33. Pi VN (2008) Performance enhancement of abrasive waterjet cutting 

  34. Pi VN, Chau HV, Hung TQ (2013) A study on recycling of supreme garnet in abrasive waterjet machining. In: Applied mechanics and materials. Trans Tech Publ, pp 499-503 

  35. Salko D (1984) Peening by water. In: Second International Conference on Shot Peening (ICSP), Chicago, NJ, May, 1984. pp 14-17 

  36. DA Summers 2003 Waterjetting technology 10.1201/9781482294828 Summers DA (2003) Waterjetting technology. CRC Press, USA 

  37. Exp Fluids H Vahedi Tafreshi 35 364 2003 10.1007/s00348-003-0685-y Vahedi Tafreshi H, Pourdeyhimi B (2003) The effects of nozzle geometry on waterjet breakup at high Reynolds numbers. Exp Fluids 35:364-371. https://doi.org/10.1007/s00348-003-0685-y 

  38. J Zeng 483 1992 Jet cutting technology 10.1007/978-94-011-2678-6_33 Zeng J, Kim TJ (1992) Development of an abrasive waterjet kerf cutting model for brittle materials. Jet cutting technology. Springer, Berlin, pp 483-501 

  39. Wear J Zeng 193 207 1996 10.1016/0043-1648(95)06721-3 Zeng J, Kim TJ (1996) An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear 193:207-217 

  40. 10.4028/www.scientific.net/AMR.76-78.357 Zhu HT, Huang CZ, Wang J, Zhao GQ, Li QL (2009) Modeling material removal in fracture erosion for brittle materials by abrasive waterjet. In: Advanced Materials Research. Trans Tech Publ, pp 357-362 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로