$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Multi-resolution topology optimization using adaptive isosurface variable grouping (MTOP-aIVG) for enhanced computational efficiency

Structural and multidisciplinary optimization : journal of the International Society for Structural and Multidisciplinary Optimization, v.63 no.4, 2021년, pp.1743 - 1766  

Yoo, Jaeeun ,  Jang, In Gwun ,  Lee, Ikjin

초록이 없습니다.

참고문헌 (59)

  1. Struct Multidiscip Optim N Aage 51 3 565 2015 10.1007/s00158-014-1157-0 Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565-572 

  2. Struct Multidiscip Optim N Aage 47 4 493 2013 10.1007/s00158-012-0869-2 Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493-505 

  3. J Comput Phys G Allaire 194 1 363 2004 10.1016/j.jcp.2003.09.032 Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363-393 

  4. Struct Multidiscip Optim O Amir 49 5 815 2014 10.1007/s00158-013-1015-5 Amir O, Aage N, Lazarov BS (2014) On multigrid-CG for efficient topology optimization. Struct Multidiscip Optim 49(5):815-829 

  5. Struct Multidiscip Optim E Andreassen 43 1 1 2011 10.1007/s00158-010-0594-7 Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1-16 

  6. Int J Numer Methods Eng TE Bruns 57 10 1413 2003 10.1002/nme.783 Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413-1430 

  7. Struct Multidiscip Optim A Clausen 56 5 1147 2017 10.1007/s00158-017-1709-1 Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56(5):1147-1155 

  8. 10.1137/1.9780898718881 Davis TA (2006) Direct methods for sparse linear systems. SIAM 

  9. Struct Multidiscip Optim JD Deaton 49 1 1 2014 10.1007/s00158-013-0956-z Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1-38 

  10. J Eng Mater Technol G Dong 141 1 2019 10.1115/1.4040555 Dong G, Tang Y, Zhao YF (2019) A 149 line homogenization code for three-dimensional cellular materials written in MATLAB. J Eng Mater Technol 141(1):011005 

  11. Struct Multidiscip Optim A Evgrafov 36 4 329 2008 10.1007/s00158-007-0190-7 Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36(4):329-345 

  12. Comput Methods Appl Mech Eng H-H Gao 289 387 2015 10.1016/j.cma.2015.02.022 Gao H-H, Zhu J-H, Zhang W-H, Zhou Y (2015) An improved adaptive constraint aggregation for integrated layout and topology optimization. Comput Methods Appl Mech Eng 289:387-408 

  13. Int J Numer Methods Eng JP Groen 110 10 903 2017 10.1002/nme.5432 Groen JP, Langelaar M, Sigmund O, Ruess M (2017) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Methods Eng 110(10):903-920 

  14. Struct Multidiscip Optim JK Guest 44 4 443 2011 10.1007/s00158-011-0676-1 Guest JK, Asadpoure A, Ha S-H (2011) Eliminating beta-continuation from Heaviside projection and density filter algorithms. Struct Multidiscip Optim 44(4):443-453 

  15. J Appl Mech X Guo 81 8 2014 10.1115/1.4027609 Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J Appl Mech 81(8):081009 

  16. Int J Numer Methods Eng D Gupta 111 1 88 2017 10.1002/nme.5455 Gupta D, van der Veen G, Aragón A, Langelaar M, van Keulen F (2017) Bounds for decoupled design and analysis discretizations in topology optimization. Int J Numer Methods Eng 111(1):88-100 

  17. Struct Multidiscip Optim DK Gupta 58 4 1335 2018 10.1007/s00158-018-2048-6 Gupta DK, Langelaar M, van Keulen F (2018) QR-patterns: artefacts in multiresolution topology optimization. Struct Multidiscip Optim 58(4):1335-1350 

  18. Int J Numer Methods Eng DK Gupta 121 3 450 2020 10.1002/nme.6217 Gupta DK, van Keulen F, Langelaar M (2020) Design and analysis adaptivity in multiresolution topology optimization. Int J Numer Methods Eng 121(3):450-476 

  19. Struct Multidiscip Optim E Holmberg 48 1 33 2013 10.1007/s00158-012-0880-7 Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33-47 

  20. Struct Multidiscip Optim X Huang 41 5 671 2010 10.1007/s00158-010-0487-9 Huang X, Xie Y-M (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671-683 

  21. Int J Numer Methods Eng IG Jang 66 11 1817 2006 10.1002/nme.1607 Jang IG, Kwak BM (2006) Evolutionary topology optimization using design space adjustment based on fixed grid. Int J Numer Methods Eng 66(11):1817-1840 

  22. 10.1007/s00158-007-0112-8 Jang IG, Kwak BM (2008) Design space optimization using design space adjustment and refinement. Struct Multidiscip Optim 35(1):41-54 

  23. Int J Heat Mass Transf Y Joo 109 123 2017 10.1016/j.ijheatmasstransfer.2017.01.099 Joo Y, Lee I, Kim SJ (2017) Topology optimization of heat sinks in natural convection considering the effect of shape-dependent heat transfer coefficient. Int J Heat Mass Transf 109:123-133 

  24. Int J Heat Mass Transf Y Joo 127 32 2018 10.1016/j.ijheatmasstransfer.2018.08.009 Joo Y, Lee I, Kim SJ (2018) Efficient three-dimensional topology optimization of heat sinks in natural convection using the shape-dependent convection model. Int J Heat Mass Transf 127:32-40 

  25. Int J Numer Methods Eng IY Kim 53 8 1979 2002 10.1002/nme.369 Kim IY, Kwak BM (2002) Design space optimization using a numerical design continuation method. Int J Numer Methods Eng 53(8):1979-2002 

  26. Int J Solids Struct JE Kim 40 23 6473 2003 10.1016/S0020-7683(03)00417-7 Kim JE, Jang G-W, Kim YY (2003) Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization. Int J Solids Struct 40(23):6473-6496 

  27. Int J Numer Methods Eng SY Kim 90 6 752 2012 10.1002/nme.3343 Kim SY, Kim IY, Mechefske CK (2012) A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design variable method. Int J Numer Methods Eng 90(6):752-783 

  28. Int J Solids Struct TS Kim 41 9-10 2623 2004 10.1016/j.ijsolstr.2003.11.027 Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41(9-10):2623-2641 

  29. Int J Solids Struct YY Kim 37 39 5529 2000 10.1016/S0020-7683(99)00251-6 Kim YY, Yoon GH (2000) Multi-resolution multi-scale topology optimization-a new paradigm. Int J Solids Struct 37(39):5529-5559 

  30. Comput Struct I Kosaka 70 1 47 1999 10.1016/S0045-7949(98)00158-8 Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70(1):47-61 

  31. G Kreisselmeier 113 1980 Computer aided design of control systems 10.1016/B978-0-08-024488-4.50022-X Kreisselmeier G, Steinhauser R (1980) Systematic control design by optimizing a vector performance index. In: Computer aided design of control systems. Elsevier, Amsterdam, pp 113-117 

  32. Struct Multidiscip Optim C Le 41 4 605 2010 10.1007/s00158-009-0440-y Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605-620 

  33. Eng Optim S Lee 40 3 271 2008 10.1080/03052150701693198 Lee S, Kwak BM (2008) Smooth boundary topology optimization for eigenvalue performance and its application to the design of a flexural stage. Eng Optim 40(3):271-285 

  34. Comput Struct L Li 131 34 2014 10.1016/j.compstruc.2013.10.010 Li L, Khandelwal K (2014) Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. Comput Struct 131:34-45 

  35. Struct Multidiscip Optim Z Liao 60 2 727 2019 10.1007/s00158-019-02234-6 Liao Z, Zhang Y, Wang Y, Li W (2019) A triple acceleration method for topology optimization. Struct Multidiscip Optim 60(2):727-744 

  36. Comput Methods Appl Mech Eng QX Lieu 323 272 2017 10.1016/j.cma.2017.05.009 Lieu QX, Lee J (2017a) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272-302 

  37. Int J Numer Methods Eng QX Lieu 112 13 2025 2017 10.1002/nme.5593 Lieu QX, Lee J (2017b) Multiresolution topology optimization using isogeometric analysis. Int J Numer Methods Eng 112(13):2025-2047 

  38. Struct Multidiscip Optim K Liu 50 6 1175 2014 10.1007/s00158-014-1107-x Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50(6):1175-1196 

  39. Int J Numer Methods Eng K Matsui 59 14 1925 2004 10.1002/nme.945 Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59(14):1925-1944 

  40. Struct Multidiscip Optim TH Nguyen 56 3 571 2017 10.1007/s00158-017-1675-7 Nguyen TH, Le CH, Hajjar JF (2017) Topology optimization using the p-version of the finite element method. Struct Multidiscip Optim 56(3):571-586 

  41. Struct Multidiscip Optim TH Nguyen 41 4 525 2010 10.1007/s00158-009-0443-8 Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525-539 

  42. Int J Numer Methods Eng TH Nguyen 92 6 507 2012 10.1002/nme.4344 Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92(6):507-530 

  43. Struct Multidiscip Optim TH Nguyen 44 5 593 2011 10.1007/s00158-011-0669-0 Nguyen TH, Song J, Paulino GH (2011) Single-loop system reliability-based topology optimization considering statistical dependence between limit-states. Struct Multidiscip Optim 44(5):593-611 

  44. Eng Optim J Park 51 5 796 2019 10.1080/0305215X.2018.1497613 Park J, Nguyen TH, Shah JJ, Sutradhar A (2019) Conceptual design of efficient heat conductors using multi-material topology optimization. Eng Optim 51(5):796-814 

  45. Comput Methods Appl Mech Eng J Park 285 571 2015 10.1016/j.cma.2014.10.011 Park J, Sutradhar A (2015) A multi-resolution method for 3D multi-material topology optimization. Comput Methods Appl Mech Eng 285:571-586 

  46. Eng Comput O Querin 15 8 1031 1998 10.1108/02644409810244129 Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031-1048 

  47. Struct Multidiscip Optim S Rojas-Labanda 52 3 527 2015 10.1007/s00158-015-1250-z Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solvers for structural topology optimization. Struct Multidiscip Optim 52(3):527-547 

  48. 10.1137/1.9780898718003 Saad Y (2003) Iterative methods for sparse linear systems, 2nd Edition. SIAM 

  49. J Comput Phys JA Sethian 163 2 489 2000 10.1006/jcph.2000.6581 Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489-528 

  50. Struct Multidiscip Optim O Sigmund 21 2 120 2001 10.1007/s001580050176 Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120-127 

  51. Struct Multidiscip Optim O Sigmund 33 4-5 401 2007 10.1007/s00158-006-0087-x Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401-424 

  52. Struct Multidiscip Optim O Sigmund 48 6 1031 2013 10.1007/s00158-013-0978-6 Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031-1055 

  53. Int J Numer Methods Eng K Svanberg 24 2 359 1987 10.1002/nme.1620240207 Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359-373 

  54. SIAM J Optim K Svanberg 12 2 555 2002 10.1137/S1052623499362822 Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555-573 

  55. Struct Multidiscip Optim A Verbart 55 2 663 2017 10.1007/s00158-016-1524-0 Verbart A, Langelaar M, Van Keulen F (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct Multidiscip Optim 55(2):663-679 

  56. Struct Multidiscip Optim F Wang 43 6 767 2011 10.1007/s00158-010-0602-y Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767-784 

  57. Int J Numer Methods Eng S Wang 69 12 2441 2007 10.1002/nme.1798 Wang S, Ed S, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441-2468 

  58. Struct Optim R Yang 12 2-3 98 1996 10.1007/BF01196941 Yang R, Chen C (1996) Stress-based topology optimization. Struct Optim 12(2-3):98-105 

  59. Struct Multidiscip Optim W Zhang 53 6 1243 2016 10.1007/s00158-015-1372-3 Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243-1260 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로