최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Structural and multidisciplinary optimization : journal of the International Society for Structural and Multidisciplinary Optimization, v.63 no.4, 2021년, pp.1743 - 1766
Yoo, Jaeeun , Jang, In Gwun , Lee, Ikjin
초록이 없습니다.
Struct Multidiscip Optim N Aage 51 3 565 2015 10.1007/s00158-014-1157-0 Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565-572
Struct Multidiscip Optim N Aage 47 4 493 2013 10.1007/s00158-012-0869-2 Aage N, Lazarov BS (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493-505
J Comput Phys G Allaire 194 1 363 2004 10.1016/j.jcp.2003.09.032 Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363-393
Struct Multidiscip Optim O Amir 49 5 815 2014 10.1007/s00158-013-1015-5 Amir O, Aage N, Lazarov BS (2014) On multigrid-CG for efficient topology optimization. Struct Multidiscip Optim 49(5):815-829
Struct Multidiscip Optim E Andreassen 43 1 1 2011 10.1007/s00158-010-0594-7 Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1-16
Int J Numer Methods Eng TE Bruns 57 10 1413 2003 10.1002/nme.783 Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413-1430
Struct Multidiscip Optim A Clausen 56 5 1147 2017 10.1007/s00158-017-1709-1 Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56(5):1147-1155
Struct Multidiscip Optim JD Deaton 49 1 1 2014 10.1007/s00158-013-0956-z Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1-38
J Eng Mater Technol G Dong 141 1 2019 10.1115/1.4040555 Dong G, Tang Y, Zhao YF (2019) A 149 line homogenization code for three-dimensional cellular materials written in MATLAB. J Eng Mater Technol 141(1):011005
Struct Multidiscip Optim A Evgrafov 36 4 329 2008 10.1007/s00158-007-0190-7 Evgrafov A, Rupp CJ, Maute K, Dunn ML (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36(4):329-345
Comput Methods Appl Mech Eng H-H Gao 289 387 2015 10.1016/j.cma.2015.02.022 Gao H-H, Zhu J-H, Zhang W-H, Zhou Y (2015) An improved adaptive constraint aggregation for integrated layout and topology optimization. Comput Methods Appl Mech Eng 289:387-408
Int J Numer Methods Eng JP Groen 110 10 903 2017 10.1002/nme.5432 Groen JP, Langelaar M, Sigmund O, Ruess M (2017) Higher-order multi-resolution topology optimization using the finite cell method. Int J Numer Methods Eng 110(10):903-920
Struct Multidiscip Optim JK Guest 44 4 443 2011 10.1007/s00158-011-0676-1 Guest JK, Asadpoure A, Ha S-H (2011) Eliminating beta-continuation from Heaviside projection and density filter algorithms. Struct Multidiscip Optim 44(4):443-453
J Appl Mech X Guo 81 8 2014 10.1115/1.4027609 Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J Appl Mech 81(8):081009
Int J Numer Methods Eng D Gupta 111 1 88 2017 10.1002/nme.5455 Gupta D, van der Veen G, Aragón A, Langelaar M, van Keulen F (2017) Bounds for decoupled design and analysis discretizations in topology optimization. Int J Numer Methods Eng 111(1):88-100
Struct Multidiscip Optim DK Gupta 58 4 1335 2018 10.1007/s00158-018-2048-6 Gupta DK, Langelaar M, van Keulen F (2018) QR-patterns: artefacts in multiresolution topology optimization. Struct Multidiscip Optim 58(4):1335-1350
Int J Numer Methods Eng DK Gupta 121 3 450 2020 10.1002/nme.6217 Gupta DK, van Keulen F, Langelaar M (2020) Design and analysis adaptivity in multiresolution topology optimization. Int J Numer Methods Eng 121(3):450-476
Struct Multidiscip Optim E Holmberg 48 1 33 2013 10.1007/s00158-012-0880-7 Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33-47
Struct Multidiscip Optim X Huang 41 5 671 2010 10.1007/s00158-010-0487-9 Huang X, Xie Y-M (2010) A further review of ESO type methods for topology optimization. Struct Multidiscip Optim 41(5):671-683
Int J Numer Methods Eng IG Jang 66 11 1817 2006 10.1002/nme.1607 Jang IG, Kwak BM (2006) Evolutionary topology optimization using design space adjustment based on fixed grid. Int J Numer Methods Eng 66(11):1817-1840
10.1007/s00158-007-0112-8 Jang IG, Kwak BM (2008) Design space optimization using design space adjustment and refinement. Struct Multidiscip Optim 35(1):41-54
Int J Heat Mass Transf Y Joo 109 123 2017 10.1016/j.ijheatmasstransfer.2017.01.099 Joo Y, Lee I, Kim SJ (2017) Topology optimization of heat sinks in natural convection considering the effect of shape-dependent heat transfer coefficient. Int J Heat Mass Transf 109:123-133
Int J Heat Mass Transf Y Joo 127 32 2018 10.1016/j.ijheatmasstransfer.2018.08.009 Joo Y, Lee I, Kim SJ (2018) Efficient three-dimensional topology optimization of heat sinks in natural convection using the shape-dependent convection model. Int J Heat Mass Transf 127:32-40
Int J Numer Methods Eng IY Kim 53 8 1979 2002 10.1002/nme.369 Kim IY, Kwak BM (2002) Design space optimization using a numerical design continuation method. Int J Numer Methods Eng 53(8):1979-2002
Int J Solids Struct JE Kim 40 23 6473 2003 10.1016/S0020-7683(03)00417-7 Kim JE, Jang G-W, Kim YY (2003) Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its applications to multiscale topology design optimization. Int J Solids Struct 40(23):6473-6496
Int J Numer Methods Eng SY Kim 90 6 752 2012 10.1002/nme.3343 Kim SY, Kim IY, Mechefske CK (2012) A new efficient convergence criterion for reducing computational expense in topology optimization: reducible design variable method. Int J Numer Methods Eng 90(6):752-783
Int J Solids Struct TS Kim 41 9-10 2623 2004 10.1016/j.ijsolstr.2003.11.027 Kim TS, Kim JE, Kim YY (2004) Parallelized structural topology optimization for eigenvalue problems. Int J Solids Struct 41(9-10):2623-2641
Int J Solids Struct YY Kim 37 39 5529 2000 10.1016/S0020-7683(99)00251-6 Kim YY, Yoon GH (2000) Multi-resolution multi-scale topology optimization-a new paradigm. Int J Solids Struct 37(39):5529-5559
Comput Struct I Kosaka 70 1 47 1999 10.1016/S0045-7949(98)00158-8 Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70(1):47-61
Struct Multidiscip Optim C Le 41 4 605 2010 10.1007/s00158-009-0440-y Le C, Norato J, Bruns T, Ha C, Tortorelli D (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605-620
Eng Optim S Lee 40 3 271 2008 10.1080/03052150701693198 Lee S, Kwak BM (2008) Smooth boundary topology optimization for eigenvalue performance and its application to the design of a flexural stage. Eng Optim 40(3):271-285
Comput Struct L Li 131 34 2014 10.1016/j.compstruc.2013.10.010 Li L, Khandelwal K (2014) Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. Comput Struct 131:34-45
Struct Multidiscip Optim Z Liao 60 2 727 2019 10.1007/s00158-019-02234-6 Liao Z, Zhang Y, Wang Y, Li W (2019) A triple acceleration method for topology optimization. Struct Multidiscip Optim 60(2):727-744
Comput Methods Appl Mech Eng QX Lieu 323 272 2017 10.1016/j.cma.2017.05.009 Lieu QX, Lee J (2017a) A multi-resolution approach for multi-material topology optimization based on isogeometric analysis. Comput Methods Appl Mech Eng 323:272-302
Int J Numer Methods Eng QX Lieu 112 13 2025 2017 10.1002/nme.5593 Lieu QX, Lee J (2017b) Multiresolution topology optimization using isogeometric analysis. Int J Numer Methods Eng 112(13):2025-2047
Struct Multidiscip Optim K Liu 50 6 1175 2014 10.1007/s00158-014-1107-x Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidiscip Optim 50(6):1175-1196
Int J Numer Methods Eng K Matsui 59 14 1925 2004 10.1002/nme.945 Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Int J Numer Methods Eng 59(14):1925-1944
Struct Multidiscip Optim TH Nguyen 56 3 571 2017 10.1007/s00158-017-1675-7 Nguyen TH, Le CH, Hajjar JF (2017) Topology optimization using the p-version of the finite element method. Struct Multidiscip Optim 56(3):571-586
Struct Multidiscip Optim TH Nguyen 41 4 525 2010 10.1007/s00158-009-0443-8 Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational paradigm for multiresolution topology optimization (MTOP). Struct Multidiscip Optim 41(4):525-539
Int J Numer Methods Eng TH Nguyen 92 6 507 2012 10.1002/nme.4344 Nguyen TH, Paulino GH, Song J, Le CH (2012) Improving multiresolution topology optimization via multiple discretizations. Int J Numer Methods Eng 92(6):507-530
Struct Multidiscip Optim TH Nguyen 44 5 593 2011 10.1007/s00158-011-0669-0 Nguyen TH, Song J, Paulino GH (2011) Single-loop system reliability-based topology optimization considering statistical dependence between limit-states. Struct Multidiscip Optim 44(5):593-611
Eng Optim J Park 51 5 796 2019 10.1080/0305215X.2018.1497613 Park J, Nguyen TH, Shah JJ, Sutradhar A (2019) Conceptual design of efficient heat conductors using multi-material topology optimization. Eng Optim 51(5):796-814
Comput Methods Appl Mech Eng J Park 285 571 2015 10.1016/j.cma.2014.10.011 Park J, Sutradhar A (2015) A multi-resolution method for 3D multi-material topology optimization. Comput Methods Appl Mech Eng 285:571-586
Eng Comput O Querin 15 8 1031 1998 10.1108/02644409810244129 Querin O, Steven G, Xie Y (1998) Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Eng Comput 15(8):1031-1048
Struct Multidiscip Optim S Rojas-Labanda 52 3 527 2015 10.1007/s00158-015-1250-z Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solvers for structural topology optimization. Struct Multidiscip Optim 52(3):527-547
J Comput Phys JA Sethian 163 2 489 2000 10.1006/jcph.2000.6581 Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489-528
Struct Multidiscip Optim O Sigmund 21 2 120 2001 10.1007/s001580050176 Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidiscip Optim 21(2):120-127
Struct Multidiscip Optim O Sigmund 33 4-5 401 2007 10.1007/s00158-006-0087-x Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401-424
Struct Multidiscip Optim O Sigmund 48 6 1031 2013 10.1007/s00158-013-0978-6 Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031-1055
Int J Numer Methods Eng K Svanberg 24 2 359 1987 10.1002/nme.1620240207 Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Methods Eng 24(2):359-373
SIAM J Optim K Svanberg 12 2 555 2002 10.1137/S1052623499362822 Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555-573
Struct Multidiscip Optim A Verbart 55 2 663 2017 10.1007/s00158-016-1524-0 Verbart A, Langelaar M, Van Keulen F (2017) A unified aggregation and relaxation approach for stress-constrained topology optimization. Struct Multidiscip Optim 55(2):663-679
Struct Multidiscip Optim F Wang 43 6 767 2011 10.1007/s00158-010-0602-y Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767-784
Int J Numer Methods Eng S Wang 69 12 2441 2007 10.1002/nme.1798 Wang S, Ed S, Paulino GH (2007) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441-2468
Struct Optim R Yang 12 2-3 98 1996 10.1007/BF01196941 Yang R, Chen C (1996) Stress-based topology optimization. Struct Optim 12(2-3):98-105
Struct Multidiscip Optim W Zhang 53 6 1243 2016 10.1007/s00158-015-1372-3 Zhang W, Yuan J, Zhang J, Guo X (2016) A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243-1260
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.