$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Deep learning STEM-EDX tomography of nanocrystals

Nature machine intelligence, v.3 no.3, 2021년, pp.267 - 274  

Han, Yoseob ,  Jang, Jaeduck ,  Cha, Eunju ,  Lee, Junho ,  Chung, Hyungjin ,  Jeong, Myoungho ,  Kim, Tae-Gon ,  Chae, Byeong Gyu ,  Kim, Hee Goo ,  Jun, Shinae ,  Hwang, Sungwoo ,  Lee, Eunha ,  Ye, Jong Chul

초록이 없습니다.

참고문헌 (37)

  1. Science AP Alivisatos 271 933 1996 10.1126/science.271.5251.933 Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933-937 (1996). 

  2. Phys. Rev. A D Loss 57 120 1998 10.1103/PhysRevA.57.120 Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998). 

  3. Nature Y-H Won 575 634 2019 10.1038/s41586-019-1771-5 Won, Y.-H. et al. Highly efficient and stable inp/znse/zns quantum dot light-emitting diodes. Nature 575, 634-638 (2019). 

  4. 10.1007/978-1-4939-6676-9_27 Goldstein, J. I. et al. Scanning Electron Microscopy and X-ray Microanalysis (Springer, 2017). 

  5. Micron K Lepinay 47 43 2013 10.1016/j.micron.2013.01.004 Lepinay, K., Lorut, F., Pantel, R. & Epicier, T. Chemical 3D tomography of 28 nm high K metal gate transistor: STEM XEDS experimental method and results. Micron 47, 43-49 (2013). 

  6. Ultramicroscopy TJ Slater 162 61 2016 10.1016/j.ultramic.2015.10.007 Slater, T. J. et al. STEM-EDX tomography of bimetallic nanoparticles: a methodological investigation. Ultramicroscopy 162, 61-73 (2016). 

  7. Appl. Phys. Lett. Z Saghi 91 251906 2007 10.1063/1.2826273 Saghi, Z., Xu, X., Peng, Y., Inkson, B. & Möbus, G. Three-dimensional chemical analysis of tungsten probes by energy dispersive x-ray nanotomography. Appl. Phys. Lett. 91, 251906 (2007). 

  8. Ultramicroscopy Z Zhong 174 35 2017 10.1016/j.ultramic.2016.12.008 Zhong, Z., Goris, B., Schoenmakers, R., Bals, S. & Batenburg, K. J. A bimodal tomographic reconstruction technique combining EDS-STEM and HAADF-STEM. Ultramicroscopy 174, 35-45 (2017). 

  9. J. Theor. Biol. P Gilbert 36 105 1972 10.1016/0022-5193(72)90180-4 Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105-117 (1972). 

  10. 10.1002/mp.12344 Kang, E., Min, J. & Ye, J. C. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med. Phys. 44, e360-e375 (2017). 

  11. IEEE Trans. Med. Imaging H Chen 36 2524 2017 10.1109/TMI.2017.2715284 Chen, H. et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36, 2524-2535 (2017). 

  12. 10.1109/TMI.2018.2823756 Kang, E., Chang, W., Yoo, J. & Ye, J. C. Deep convolutional framelet denosing for low-dose CT via wavelet residual network. IEEE Trans. Med. Imaging 37, 1358-1369 (2018). 

  13. IEEE Trans. Image Process. KH Jin 26 4509 2017 10.1109/TIP.2017.2713099 Jin, K. H., McCann, M. T., Froustey, E. & Unser, M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26, 4509-4522 (2017). 

  14. IEEE Trans. Med. Imaging Y Han 37 1418 2018 10.1109/TMI.2018.2823768 Han, Y. & Ye, J. C. Framing U-Net via deep convolutional framelets: application to sparse-view CT. IEEE Trans. Med. Imaging 37, 1418-1429 (2018). 

  15. Han, Y., Kang, J. & Ye, J. C. Deep learning reconstruction for 9-view dual energy CT baggage scanner. In Proc. Fifth International Conference on Image Formation in X-Ray Computed Tomography 407-410 (CT Meeting, 2018). 

  16. 10.1109/ISBI.2016.7493320 Wang, S. et al. Accelerating magnetic resonance imaging via deep learning. In 2016 IEEE 13th International Symposium on Biomedical Imaging 514-517 (IEEE, 2016).. 

  17. Magn. Reson. Med. K Hammernik 79 3055 2018 10.1002/mrm.26977 Hammernik, K. et al. Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79, 3055-3071 (2018). 

  18. 10.1109/TBME.2018.2821699 Lee, D., Yoo, J., Tak, S. & Ye, J. Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65, 1985-1995 (2018). 

  19. 10.1002/mrm.27106 Han, Y. S., Yoo, J. & Ye, J. C. Deep learning with domain adaptation for accelerated projection reconstruction MR. Magn. Reson. Med. 80, 1189-1205 (2018). 

  20. 10.1109/TMI.2018.2869871 Gong, K. et al. Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans. Med. Imaging 38, 675-685 (2018). 

  21. 10.1109/TMI.2018.2888491 Gong, K., Catana, C., Qi, J. & Li, Q. PET image reconstruction using deep image prior. IEEE Trans. Med. Imaging 38, 1655-1665 (2018). 

  22. IEEE Trans. Med. Imaging AC Luchies 37 2010 2018 10.1109/TMI.2018.2809641 Luchies, A. C. & Byram, B. C. Deep neural networks for ultrasound beamforming. IEEE Trans. Med. Imaging 37, 2010-2021 (2018). 

  23. IEEE Trans. Med. Imaging YH Yoon 38 325 2019 10.1109/TMI.2018.2864821 Yoon, Y. H., Khan, S., Huh, J. & Ye, J. C. Efficient B-mode ultrasound image reconstruction from sub-sampled RF data using deep learning. IEEE Trans. Med. Imaging 38, 325-336 (2019). 

  24. Optica Y Rivenson 4 1437 2017 10.1364/OPTICA.4.001437 Rivenson, Y. et al. Deep learning microscopy. Optica 4, 1437-1443 (2017). 

  25. Optica E Nehme 5 458 2018 10.1364/OPTICA.5.000458 Nehme, E., Weiss, L. E., Michaeli, T. & Shechtman, Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458-464 (2018). 

  26. Optica A Sinha 4 1117 2017 10.1364/OPTICA.4.001117 Sinha, A., Lee, J., Li, S. & Barbastathis, G. Lensless computational imaging through deep learning. Optica 4, 1117-1125 (2017). 

  27. IEEE Trans. Inf. Theory DL Donoho 52 1289 2006 10.1109/TIT.2006.871582 Donoho, D. L. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289-1306 (2006). 

  28. SIAM J. Imag. Sci. JC Ye 11 991 2018 10.1137/17M1141771 Ye, J. C., Han, Y. & Cha, E. Deep convolutional framelets: a general deep learning framework for inverse problems. SIAM J. Imag. Sci. 11, 991-1048 (2018). 

  29. Ye, J. C. & Sung, W. K. Understanding geometry of encoder-decoder CNNs. In Proc. 36th International Conference on Machine Learning (eds Chaudhuri, K. & Salakhutdinov, R.) 7064-7073 (PMLR, 2019).. 

  30. ACS Appl. Nano Mater. Y Kim 2 1496 2019 10.1021/acsanm.8b02063 Kim, Y. et al. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2, 1496-1504 (2019). 

  31. Polym. Adv. Technol. S Lee 30 749 2019 10.1002/pat.4513 Lee, S. & Lee, C. High-density quantum dots composites and its photolithographic patterning applications. Polym. Adv. Technol. 30, 749-754 (2019). 

  32. J. Am. Chem. Soc. H Virieux 134 19701 2012 10.1021/ja307124m Virieux, H. et al. InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 134, 19701-19708 (2012). 

  33. Chem. Mater. JL Stein 30 6377 2018 10.1021/acs.chemmater.8b02590 Stein, J. L. et al. Probing surface defects of InP quantum dots using phosphorus Kα and Kβ X-ray emission spectroscopy. Chem. Mater. 30, 6377-6388 (2018). 

  34. Chem. Mater. D Hahm 31 3476 2019 10.1021/acs.chemmater.9b00740 Hahm, D. et al. Design principle for bright, robust, and color-pure InP/ZnSexS1-x/ZnS heterostructures. Chem. Mater. 31, 3476-3484 (2019). 

  35. Nano Lett. KR Reid 18 709 2018 10.1021/acs.nanolett.7b03703 Reid, K. R., McBride, J. R., Freymeyer, N. J., Thal, L. B. & Rosenthal, S. J. Chemical structure, ensemble and single-particle spectroscopy of thick-shell inp-znse quantum dots. Nano Lett. 18, 709-716 (2018). 

  36. J. Microsc. W Saxton 127 127 1982 10.1111/j.1365-2818.1982.tb00405.x Saxton, W. & Baumeister, W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127, 127-138 (1982). 

  37. 10.1007/978-3-319-46723-8_49 Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention 424-432 (Springer, 2016). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로