$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Practical prediction model of the clinical response to programmed death-ligand 1 inhibitors in advanced gastric cancer 원문보기

Experimental & molecular medicine : EMM, v.53 no.2, 2021년, pp.223 - 234  

Noh, Myung-Giun (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju Korea) ,  Yoon, Youngmin (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju Korea) ,  Kim, Gihyeon (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju Korea) ,  Kim, Hyun (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju Korea) ,  Lee, Eulgi (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju Korea) ,  Kim, Yeongmin (Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Cheomdangwagi-ro 123, Buk-gu, Gwangju Korea) ,  Park, Changho (Genome and Company, Pangyo-ro 253, Bundang-gu. Seoungnam-si, Gyeonggi-do Korea) ,  Lee, Kyung-Hwa (Department of Pathology, Chonna) ,  Park, Hansoo

Abstract AI-Helper 아이콘AI-Helper

The identification of predictive biomarkers or models is necessary for the selection of patients who might benefit the most from immunotherapy. Seven histological features (signet ring cell [SRC], fibrous stroma, myxoid stroma, tumor-infiltrating lymphocytes [TILs], necrosis, tertiary lymphoid folli...

참고문헌 (39)

  1. 1. Taube JM Implications of the tumor immune microenvironment for staging and therapeutics Mod. Pathol. 2018 31 214 10.1038/modpathol.2017.156 29192647 

  2. 2. Samstein RM Tumor mutational load predicts survival after immunotherapy across multiple cancer types Nat. Genet. 2019 51 202 206 10.1038/s41588-018-0312-8 30643254 

  3. 3. Janjigian YY Genetic predictors of response to systemic therapy in esophagogastric cancer Cancer Discov. 2018 8 49 58 10.1158/2159-8290.CD-17-0787 29122777 

  4. 4. Kim ST Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer Nat. Med. 2018 24 1449 1458 10.1038/s41591-018-0101-z 30013197 

  5. 5. Wang, F. et al. Safety, efficacy and tumor mutational burden as a biomarker of overall survival benefit in chemo-refractory gastric cancer treated with toripalimab, a PD1 antibody in phase Ib/II clinical trial NCT02915432. Ann. Oncol . 30 , 1479–1486 (2019). 

  6. 6. Kim JW Prognostic implications of immunosuppressive protein expression in tumors as well as immune cell infiltration within the tumor microenvironment in gastric cancer Gastric Cancer 2016 19 42 52 10.1007/s10120-014-0440-5 25424150 

  7. 7. Lee H Prognostic implications of type and density of tumour-infiltrating lymphocytes in gastric cancer Br. J. Cancer 2008 99 1704 10.1038/sj.bjc.6604738 18941457 

  8. 8. Kim, J. Y., Kim, W. G. & Kwon, C. H. Differences in immune contextures among different molecular subtypes of gastric cancer and their prognostic impact. Gastric Cancer , 22 , 1–12 (2019). 

  9. 9. Kwak, Y., Seo, A. N., Lee, H. E. & Lee, H. S. Tumor immune response and immunotherapy in gastric cancer. Korean J. Pathol. 54 , 20 (2019). 

  10. 10. Kulangara K Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer Arch. Pathol. Lab. Med. 2018 143 330 337 10.5858/arpa.2018-0043-OA 30028179 

  11. 11. Fuchs CS Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: phase 2 clinical KEYNOTE-059 trial JAMA Oncol. 2018 4 e180013 e180013 10.1001/jamaoncol.2018.0013 29543932 

  12. 12. Kang Y-K Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial Lancet 2017 390 2461 2471 10.1016/S0140-6736(17)31827-5 28993052 

  13. 13. Muro K Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial Lancet Oncol. 2016 17 717 726 10.1016/S1470-2045(16)00175-3 27157491 

  14. 14. Cottrell T Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC) Ann. Oncol. 2018 29 1853 1860 10.1093/annonc/mdy218 29982279 

  15. 15. Stein J Major pathologic response on biopsy (MPRbx) in patients with advanced melanoma treated with anti-PD-1: evidence for an early, on-therapy biomarker of response Ann. Oncol. 2019 30 589 596 10.1093/annonc/mdz019 30689736 

  16. 16. Eisenhauer EA New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur. J. Cancer 2009 45 228 247 10.1016/j.ejca.2008.10.026 19097774 

  17. 17. Hendry S Assessing tumor infiltrating lymphocytes in solid tumors: a practical review for pathologists and proposal for a standardized method from the International Immuno-Oncology Biomarkers Working Group: Part 1: Assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research Adv. Anat. Pathol. 2017 24 235 10.1097/PAP.0000000000000162 28777142 

  18. 18. Brad C. et al. bcbio/bcbio-nextgen: v1.2.4. (2020). 10.5281/zenodo.4041990 

  19. 19. Dobin A STAR: ultrafast universal RNA-seq aligner Bioinformatics 2013 29 15 21 10.1093/bioinformatics/bts635 23104886 

  20. 20. Li H The sequence alignment/map format and SAMtools Bioinformatics 2009 25 2078 2079 10.1093/bioinformatics/btp352 19505943 

  21. 21. Ewels P Magnusson M Lundin S Käller M MultiQC: summarize analysis results for multiple tools and samples in a single report Bioinformatics 2016 32 3047 3048 10.1093/bioinformatics/btw354 27312411 

  22. 22. Zerbino DR Ensembl 2018 Nucleic Acids Res. 2017 46 D754 D761 10.1093/nar/gkx1098 

  23. 23. Liao Y Smyth GK Shi W featureCounts: an efficient general purpose program for assigning sequence reads to genomic features Bioinformatics 2013 30 923 930 10.1093/bioinformatics/btt656 24227677 

  24. 24. Love MI Huber W Anders S Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol. 2014 15 550 10.1186/s13059-014-0550-8 25516281 

  25. 25. Subramanian A Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles Proc. Natl Acad. Sci. USA 2005 102 15545 15550 10.1073/pnas.0506580102 16199517 

  26. 26. Mootha VK PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes Nat. Genet. 2003 34 267 10.1038/ng1180 12808457 

  27. 27. Hänzelmann S Castelo R Guinney J GSVA: gene set variation analysis for microarray and RNA-seq data BMC Bioinformatics 2013 14 7 10.1186/1471-2105-14-7 23323831 

  28. 28. Seiwert TY Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial Lancet Oncol. 2016 17 956 965 10.1016/S1470-2045(16)30066-3 27247226 

  29. 29. Song HJ Host inflammatory response predicts survival of patients with Epstein-Barr virus–associated gastric carcinoma Gastroenterology 2010 139 84 92. e82 10.1053/j.gastro.2010.04.002 20398662 

  30. 30. Bujlow, T., Riaz, T. & Pedersen, J. M. In 2012 international conference on computing, networking and communications (ICNC). 237–241 (IEEE). 

  31. 31. Svetnik V Random forest: a classification and regression tool for compound classification and QSAR modeling J. Chem. Inf. Comput. Sci. 2003 43 1947 1958 10.1021/ci034160g 14632445 

  32. 32. Nagtegaal, I. D. et al. The 2019 WHO classification of tumours of the digestive system. Histopathology . 76 , 182–188 (2019). 

  33. 33. Jin S The PD-1, PD-L1 expression and CD3+ T cell infiltration in relation to outcome in advanced gastric signet-ring cell carcinoma, representing a potential biomarker for immunotherapy Oncotarget 2017 8 38850 10.18632/oncotarget.16407 28418918 

  34. 34. Shahabuddin S CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways Am. J. Physiol. Cell Physiol. 2006 291 C34 C39 10.1152/ajpcell.00441.2005 16467404 

  35. 35. Zhang C CXCL9/10/11, a regulator of PD-L1 expression in gastric cancer BMC Cancer 2018 18 462 10.1186/s12885-018-4384-8 29690901 

  36. 36. Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at https://www.biorxiv.org/content/10.1101/201178v3 (2017). 

  37. 37. McLaren W The ensembl variant effect predictor Genome Biol. 2016 17 122 10.1186/s13059-016-0974-4 27268795 

  38. 38. Shen S rMATS: robust and flexible detection of differential alternative splicing from replicate RNA-Seq data Proc. Natl Acad. Sci. USA 2014 111 E5593 E5601 10.1073/pnas.1419161111 25480548 

  39. 39. Uhrig, S. Arriba - Fast and accurate gene fusion detection from RNA-Seq data https://github.com/suhrig/arriba/ (2019). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로