$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Manipulation of hot electron flow on plasmonic nanodiodes fabricated by nanosphere lithography

Nanotechnology, v.32 no.22, 2021년, pp.225203 -   

Kang, Mincheol ,  Park, Yujin ,  Lee, Hyunhwa ,  Lee, Changhwan ,  Park, Jeong Young

Abstract AI-Helper 아이콘AI-Helper

AbstractEnergy conversion to generate hot electrons through the excitation of localized surface plasmon resonance (LSPR) in metallic nanostructures is an emerging strategy in photovoltaics and photocatalytic devices. Important factors for surface plasmon and hot electron generation are the size, sha...

참고문헌 (54)

  1. Science Zhou 10.1126/science.aat6967 362 69 2018 Quantifying hot carrier and thermal contributions in plasmonic photocatalysis 

  2. Nat. Commun. Robatjazi 10.1038/s41467-017-00055-z 8 27 2017 Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles 

  3. J. Am. Chem. Soc. Lin 10.1021/jacs.6b09080 139 2224 2017 Edgeless Ag-Pt bimetallic nanocages: in situ monitor plasmon-induced suppression of hydrogen peroxide formation 

  4. Nano Lett. Li 10.1021/acs.nanolett.7b00992 17 3710 2017 Balancing near-field enhancement, absorption, and scattering for effective antenna-reactor plasmonic photocatalysis 

  5. Nanoscale Moon 10.1039/C8NR05144E 10 22180 2018 Plasmonic hot carrier-driven oxygen evolution reaction on Au nanoparticles/TiO2 nanotube arrays 

  6. Nano Lett. Lee 10.1021/nl2022459 11 4251 2011 Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes 

  7. Nat. Energy Nozik 10.1038/s41560-018-0112-5 3 170 2018 Utilizing hot electrons 

  8. Energy Environ. Sci. Erwin 10.1039/C5EE03847B 9 1577 2016 Light trapping in mesoporous solar cells with plasmonic nanostructures 

  9. Faraday Discuss. Therrien 10.1039/C8FD00151K 214 59 2019 Impact of chemical interface damping on surface plasmon dephasing 

  10. Science Wu 10.1126/science.aac5443 349 632 2015 Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition 

  11. Nat. Photon. Tan 10.1038/s41566-017-0049-4 11 806 2017 Plasmonic coupling at a metal/semiconductor interface 

  12. Nature McFarland 10.1038/nature01316 421 616 2003 A photovoltaic device structure based on internal electron emission 

  13. Nat. Nanotechnol. Schuck 10.1038/nnano.2013.228 8 799 2013 NANOIMAGING hot electrons go through the barrier 

  14. Nat. Photon. Clavero 10.1038/nphoton.2013.238 8 95 2014 Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices 

  15. Nano Lett. Li 10.1021/nl501090w 14 3510 2014 Metamaterial perfect absorber based hot electron photodetection 

  16. Energy Environ. Sci. Sa 10.1039/c3ee42731e 6 3584 2013 Direct observation of charge separation on Au localized surface plasmons 

  17. Chem. Rev. Park 10.1021/cr400311p 115 2781 2015 Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions 

  18. J. Am. Chem. Soc. Somorjai 10.1021/ja9061954 131 16589 2009 Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques 

  19. J. Phys. Chem. C Lee 10.1021/jp303099w 116 18591 2012 The effect of dye molecules and surface plasmons in photon-induced hot electron flows detected on Au/TiO2 nanodiodes 

  20. Appl. Phys. Lett. Lee 10.1063/1.4799156 102 123112 2013 Probing polarization modes of Ag nanowires with hot electron detection on Au/TiO2 nanodiodes 

  21. J. Phys. Chem. C Lee 10.1021/jp409894b 118 5650 2014 Enhanced surface plasmon effect of Ag/TiO2 nanodiodes on internal photoemission 

  22. Sci. Rep. Lee 10.1038/srep04580 4 4580 2014 Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers 

  23. Nanotechnology Lee 10.1088/0957-4484/26/44/445201 26 445201 2015 Amplification of hot electron flow by the surface plasmon effect on metal-insulator-metal nanodiodes 

  24. J. Phys. Condens. Matter. Lee 10.1088/0953-8984/28/25/254006 28 25 2016 Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes 

  25. Sci. Rep. Goddeti 10.1038/s41598-018-25335-6 8 7330 2018 Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes 

  26. ACS Appl. Mater. Interfaces Lee 10.1021/acsami.7b16793 10 5081 2018 Enhancement of hot electron flow in plasmonic nanodiodes by incorporating PbS quantum dots 

  27. RSC Adv. Lee 10.1039/C9RA02601K 9 18371 2019 Hot electrons generated by intraband and interband transition detected using a plasmonic Cu/TiO2 nanodiode 

  28. Nano Lett. Lee 10.1021/acs.nanolett.8b04119 19 891 2019 Direct imaging of surface plasmon-driven hot electron flux on the Au nanoprism/TiO2 

  29. Nano Lett. Park 10.1021/acs.nanolett.9b02009 19 5489 2019 Elongated lifetime and enhanced flux of hot electrons on a perovskite plasmonic nanodiode 

  30. J. Phys. Chem. B Link 10.1021/jp984796o 103 4212 1999 Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles 

  31. J. Am. Chem. Soc. Millstone 10.1021/ja043245a 127 5312 2005 Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms 

  32. Chem. Soc. Rev. Eustis 10.1039/B514191E 35 209 2006 Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes 

  33. J. Phys. Chem. Lett. Ringe 10.1021/jz300426p 3 1479 2012 Plasmon length: a universal parameter to describe size effects in gold nanoparticles 

  34. Nano Today Lee 10.1016/j.nantod.2017.08.008 16 61 2017 Plasmonically-assisted nanoarchitectures for solar water splitting: obstacles and breakthroughs 

  35. Nat. Chem. Christopher 10.1038/nchem.1032 3 467 2011 Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures 

  36. Nat. Commun. Boerigter 10.1038/ncomms10545 7 1 2016 Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis 

  37. Nano Lett. Chan 10.1021/nl070648a 7 1947 2007 Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography 

  38. Science Marimuthu 10.1126/science.1231631 339 1590 2013 Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state 

  39. ACS Nano Knight 10.1021/nn405495q 8 834 2014 Aluminum for plasmonics 

  40. ACS Nano Clark 10.1021/acsnano.9b05277 13 9682 2019 Aluminum nanocubes have sharp corners 

  41. J. Phys. Chem. C Karpov 10.1021/jp402698f 117 15632 2013 Chemistry-driven signal transduction in a mesoporous Pt/TiO2 system 

  42. Phys. Status Solidi A Schierbaum 10.1002/pssa.201127400 208 2796 2011 Generation of an electromotive force by hydrogen­to­water oxidation with Pt­coated oxidized titanium foils 

  43. ACS Appl. Mater. Interfaces Ray 10.1021/acsami.6b11794 8 32077 2016 Hydrogen oxidation-mediated current discharge in mesoporous Pt/TiO2 nanocomposite 

  44. ACS Appl. Mater. Interfaces Jeon 10.1021/acsami.9b02863 11 15152 2019 Hot electron transport on three-dimensional Pt/mesoporous TiO2 schottky nanodiodes 

  45. J. Phys. Chem. B Tan 10.1021/jp045172n 109 11100 2005 Fabrication of size-tunable gold nanoparticles array with nanosphere lithography, reactive ion etching, and thermal annealing 

  46. IEEE Photonics Technol. Lett. Kao 10.1109/LPT.2010.2049013 22 984 2010 Localized surface plasmon-enhanced nitride-based light-emitting diode with Ag nanotriangle array by nanosphere lithography 

  47. MethodsX Zhang 10.1016/j.mex.2017.07.001 4 229 2017 Fabricating ordered 2D nano-structured arrays using nanosphere lithography 

  48. Sze 2006 

  49. Phys. Chem. Chem. Phys. Yu 10.1039/B610720F 8 5417 2006 Size effects of gold nanaoparticles on plasmon-induced photocurrents of gold-TiO2 nanocomposites 

  50. J. Phys. Chem. Lett. Reineck 10.1021/acs.jpclett.6b01884 7 4137 2016 Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency 

  51. Nat. Commun. Bernardi 10.1038/ncomms8044 6 1 2015 Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals 

  52. Nat. Commun. Sundararaman 10.1038/ncomms6788 5 1 2014 Theoretical predictions for hot-carrier generation from surface plasmon decay 

  53. Acc. Chem. Res. Park 10.1021/acs.accounts.5b00170 48 2475 2015 Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity 

  54. Catal. Lett. Park 10.1007/s10562-014-1333-2 144 1996 2014 Hot electron and surface plasmon-driven catalytic reaction in metal-semiconductor nanostructures 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로