$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] AdaIN-Based Tunable CycleGAN for Efficient Unsupervised Low-Dose CT Denoising

IEEE transactions on computational imaging, v.7, 2021년, pp.73 - 85  

Gu, Jawook (Korea Advanced Institute of Science, and Technology, Department of Bio and Brain Engineering, Daejeon, Korea) ,  Ye, Jong Chul (Korea Advanced Institute of Science, and Technology, Department of Bio and Brain Engineering, Daejeon, Korea)

Abstract AI-Helper 아이콘AI-Helper

Recently, deep learning approaches using CycleGAN have been demonstrated as a powerful unsupervised learning scheme for low-dose CT denoising. Unfortunately, one of the main limitations of the CycleGAN approach is that it requires two deep neural network generators at the training phase, although on...

참고문헌 (35)

  1. TensorFlow: Large-scale machine learning on heterogeneous systems abadi 2015 

  2. Proc 13th Int Conf Artif Intell Statist Understanding the difficulty of training deep feedforward neural networks glorot 0 249 

  3. Proc 3rd Int Conf Learn Representations Adam: A method for stochastic optimization kingma 0 

  4. 10.1109/CVPR.2017.632 

  5. Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.13, no.4, 600-612.

  6. Proc Adv Neural Inf Process Syst Adversarial self-defense for cycle-consistent gans bashkirova 0 637 

  7. Comput Vis Pattern Recognit Optimal transport driven CycleGAN for unsupervised learning in inverse problems sim 0 

  8. 10.1561/9781680835519 

  9. Optimal Transport Old and New villani 2008 338 

  10. Song, Joonyoung, Jeong, Jae-Heon, Park, Dae-Soon, Kim, Hyun-Ho, Seo, Doo-Chun, Ye, Jong Chul. Unsupervised Denoising for Satellite Imagery Using Wavelet Directional CycleGAN. IEEE transactions on geoscience and remote sensing : a publication of the IEEE Geoscience and Remote Sensing Society, vol.59, no.8, 6823-6839.

  11. Unsupervised speech domain adaptation based on disentangled representation learning for robust speech recognition park 2019 

  12. Zhang, Fengquan, Gao, Huaming, Lai, Yuping. Detail-Preserving CycleGAN-AdaIN Framework for Image-to-Ink Painting Translation. IEEE access : practical research, open solutions, vol.8, 132002-132011.

  13. Proc Int Conf Learn Representations U-GAT-IT: Unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation kim 0 

  14. Wolterink, Jelmer M., Leiner, Tim, Viergever, Max A., Isgum, Ivana. Generative Adversarial Networks for Noise Reduction in Low-Dose CT. IEEE transactions on medical imaging, vol.36, no.12, 2536-2545.

  15. Proc IEEE Int Conf Image Process Nonsubsampled contourlet transform: Construction and application in enhancement zhou 0 i 

  16. 10.1109/ICCV.2017.167 

  17. Low dose CT image and projection data [data set] mccollough 0 

  18. Kang, Eunhee, Min, Junhong, Ye, Jong Chul. A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction. Medical physics, vol.44, no.10,

  19. Clark, Kenneth, Vendt, Bruce, Smith, Kirk, Freymann, John, Kirby, Justin, Koppel, Paul, Moore, Stephen, Phillips, Stanley, Maffitt, David, Pringle, Michael, Tarbox, Lawrence, Prior, Fred. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. Journal of digital imaging : the official journal of the Society for Computer Applications in Radiology, vol.26, no.6, 1045-1057.

  20. Renker, M., Nance, J.W., Schoepf, U.J., O Brien, T.X., Zwerner, P.L., Meyer, M., Kerl, J.M., Bauer, R.W., Fink, C., Vogl, T.J.. Evaluation of Heavily Calcified Vessels with Coronary CT Angiography: Comparison of Iterative and Filtered Back Projection Image Reconstruction. Radiology, vol.260, no.2, 390-399.

  21. Chen, Hu, Zhang, Yi, Kalra, Mannudeep K., Lin, Feng, Chen, Yang, Liao, Peixi, Zhou, Jiliu, Wang, Ge. Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network. IEEE transactions on medical imaging, vol.36, no.12, 2524-2535.

  22. Chen, Baiyu, Duan, Xinhui, Yu, Zhicong, Leng, Shuai, Yu, Lifeng, McCollough, Cynthia. Technical Note: Development and validation of an open data format for CT projection data. Medical physics, vol.42, no.12, 6964-6972.

  23. Kang, Eunhee, Chang, Won, Yoo, Jaejun, Ye, Jong Chul. Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network. IEEE transactions on medical imaging, vol.37, no.6, 1358-1369.

  24. 10.1109/ICCV.2017.244 

  25. Yang, Qingsong, Yan, Pingkun, Zhang, Yanbo, Yu, Hengyong, Shi, Yongyi, Mou, Xuanqin, Kalra, Mannudeep K., Zhang, Yi, Sun, Ling, Wang, Ge. Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss. IEEE transactions on medical imaging, vol.37, no.6, 1348-1357.

  26. Leipsic, Jonathon, LaBounty, Troy M., Heilbron, Brett, Min, James K., Mancini, G. B. John, Lin, Fay Y., Taylor, Carolyn, Dunning, Allison, Earls, James P.. Adaptive Statistical Iterative Reconstruction: Assessment of Image Noise and Image Quality in Coronary CT Angiography. AJR : American journal of roentgenology, vol.195, no.3, 649-654.

  27. Kang, Eunhee, Koo, Hyun Jung, Yang, Dong Hyun, Seo, Joon Bum, Ye, Jong Chul. Cycle‐consistent adversarial denoising network for multiphase coronary CT angiography. Medical physics, vol.46, no.2, 550-562.

  28. Beister, M., Kolditz, D., Kalender, W.A.. Iterative reconstruction methods in X-ray CT. Physica medica : European journal of medical physics, vol.28, no.2, 94-108.

  29. Instance normalization: The missing ingredient for fast stylization ulyanov 2016 

  30. Proc Int Conf Artif Intell Statist Wasserstein style transfer mroueh 0 108 842 

  31. 10.1109/CVPR.2019.00453 

  32. 10.1109/ICCV.2017.304 

  33. Proc Int Conf Med Image Comput Comput -Assist Interv U-net: Convolutional networks for biomedical image segmentation ronneberger 0 234 

  34. Yang, Dong Hyun, Kim, Young-Hak, Roh, Jae-Hyung, Kang, Joon-Won, Han, Dongjin, Jung, Joonho, Kim, Namkug, Lee, Jung Bok, Ahn, Jung-Min, Lee, Jong-Young. Stress Myocardial Perfusion CT in Patients Suspected of Having Coronary Artery Disease: Visual and Quantitative Analysis—Validation by Using Fractional Flow Reserve. Radiology, vol.276, no.3, 715-723.

  35. Koo, Hyun Jung, Yang, Dong Hyun, Oh, Sang Young, Kang, Joon-Won, Kim, Dae-Hee, Song, Jae-Kwan, Lee, Jae Won, Chung, Cheol Hyun, Lim, Tae-Hwan. Demonstration of Mitral Valve Prolapse with CT for Planning of Mitral Valve Repair. Radiographics : a review publication of the Radiological Society of North America, Inc, vol.34, no.6, 1537-1552.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로