최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE transactions on electron devices, v.68 no.4, 2021년, pp.1939 - 1943
Song, Moojune (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) , Park, Min Gyu (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) , Ko, San (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) , Jang, Sung Kyu (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) , Je, Minkyu (Korea Advanced Institute of Science and Technology (KAIST), School of Electrical Engineering, Daejeon, South Korea) , Kim, Kab-Jin (Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea)
Skyrmion-based devices are an attractive candidate for nonvolatile memory and low-power computation. In a real device, however, skyrmions easily annihilate at device edges, which hampers device applications. Here, we present a novel skyrmion-based logic device, which takes advantage of the skyrmion ...
Bessarab, Pavel F., Müller, Gideon P., Lobanov, Igor S., Rybakov, Filipp N., Kiselev, Nikolai S., Jónsson, Hannes, Uzdin, Valery M., Blügel, Stefan, Bergqvist, Lars, Delin, Anna. Lifetime of racetrack skyrmions. Scientific reports, vol.8, 3433-.
Zhang, Xichao, Zhao, G. P., Fangohr, Hans, Liu, J. Ping, Xia, W. X., Xia, J., Morvan, F. J.. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Scientific reports, vol.5, 7643-.
Zhu, Daoqian, Kang, Wang, Li, Sai, Huang, Yangqi, Zhang, Xichao, Zhou, Yan, Zhao, Weisheng. Skyrmion Racetrack Memory With Random Information Update/Deletion/Insertion. IEEE transactions on electron devices, vol.65, no.1, 87-95.
Hirata, Yuushou, Kim, Duck-Ho, Kim, Se Kwon, Lee, Dong-Kyu, Oh, Se-Hyeok, Kim, Dae-Yun, Nishimura, Tomoe, Okuno, Takaya, Futakawa, Yasuhiro, Yoshikawa, Hiroki, Tsukamoto, Arata, Tserkovnyak, Yaroslav, Shiota, Yoichi, Moriyama, Takahiro, Choe, Sug-Bong, Lee, Kyung-Jin, Ono, Teruo. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nature nanotechnology, vol.14, no.3, 232-236.
Purnama, I., Gan, W. L., Wong, D. W., Lew, W. S.. Guided current-induced skyrmion motion in 1D potential well. Scientific reports, vol.5, 10620-.
Lai, P., Zhao, G. P., Tang, H., Ran, N., Wu, S. Q., Xia, J., Zhang, X., Zhou, Y.. An Improved Racetrack Structure for Transporting a Skyrmion. Scientific reports, vol.7, 45330-.
Song, Moojune, Moon, Kyoung-Woong, Yang, Seungmo, Hwang, Chanyong, Kim, Kab-Jin. Guiding of dynamic skyrmions using chiral magnetic domain wall. Applied physics express, vol.13, no.6, 063002-.
Phys Rev A Gen Phys Skyrmion logic system for large-scale reversible computation chauwin 2019 12
Zhang, Xichao, Ezawa, Motohiko, Zhou, Yan. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Scientific reports, vol.5, 9400-.
Thiele, A. A.. Steady-State Motion of Magnetic Domains. Physical review letters, vol.30, no.6, 230-233.
Iwasaki, Junichi, Koshibae, Wataru, Nagaosa, Naoto. Colossal Spin Transfer Torque Effect on Skyrmion along the Edge. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.14, no.8, 4432-4437.
Wang, X. S., Yuan, H. Y., Wang, X. R.. A theory on skyrmion size. Communications physics, vol.1, no.1, 31-31.
Zhang, Zhizhong, Zhu, Yuanzhi, Zhang, Yue, Zhang, Kun, Nan, Jiang, Zheng, Zhenyi, Zhang, Youguang, Zhao, Weisheng. Skyrmion-Based Ultra-Low Power Electric-Field-Controlled Reconfigurable (SUPER) Logic Gate. IEEE electron device letters : a publication of the IEEE Electron Devices Society, vol.40, no.12, 1984-1987.
Luo, Shijiang, Song, Min, Li, Xin, Zhang, Yue, Hong, Jeongmin, Yang, Xiaofei, Zou, Xuecheng, Xu, Nuo, You, Long. Reconfigurable Skyrmion Logic Gates. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.18, no.2, 1180-1184.
Litzius, Kai, Lemesh, Ivan, Krüger, Benjamin, Bassirian, Pedram, Caretta, Lucas, Richter, Kornel, Büttner, Felix, Sato, Koji, Tretiakov, Oleg A., Förster, Johannes, Reeve, Robert M., Weigand, Markus, Bykova, Iuliia, Stoll, Hermann, Schütz, Gisela, Beach, Geoffrey S. D., Kläui, Mathias. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nature physics, vol.13, no.2, 170-175.
Jiang, Wanjun, Zhang, Xichao, Yu, Guoqiang, Zhang, Wei, Wang, Xiao, Benjamin Jungfleisch, M., Pearson, John E., Cheng, Xuemei, Heinonen, Olle, Wang, Kang L., Zhou, Yan, Hoffmann, Axel, te Velthuis, Suzanne G. E.. Direct observation of the skyrmion Hall effect. Nature physics, vol.13, no.2, 162-169.
Sampaio, J., Cros, V., Rohart, S., Thiaville, A., Fert, A.. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nature nanotechnology, vol.8, no.11, 839-844.
Sci Rep Thermal stability and topological protection of skyrmions in nanotracks cortés-ortu no 2017 10.1038/s41598-017-03391-8 7 4060
Fert, Albert, Cros, Vincent, Sampaio, João. Skyrmions on the track. Nature nanotechnology, vol.8, no.3, 152-156.
Yoo, Myoung-Woo, Cros, Vincent, Kim, Joo-Von. Current-driven skyrmion expulsion from magnetic nanostrips. Physical review. B, vol.95, no.18, 184423-.
Xing, Xiangjun, Åkerman, Johan, Zhou, Yan. Enhanced skyrmion motion via strip domain wall. Physical review. B, vol.101, no.21, 214432-.
Zhang, Xichao, Xia, Jing, Zhou, Yan, Wang, Daowei, Liu, Xiaoxi, Zhao, Weisheng, Ezawa, Motohiko. Control and manipulation of a magnetic skyrmionium in nanostructures. Physical review. B, vol.94, no.9, 094420-.
Vansteenkiste, Arne, Leliaert, Jonathan, Dvornik, Mykola, Helsen, Mathias, Garcia-Sanchez, Felipe, Van Waeyenberge, Bartel. The design and verification of MuMax3. AIP advances, vol.4, no.10, 107133-.
Yang, Seungmo, Moon, Kyoung‐Woong, Kim, Changsoo, Kim, Duck‐Ho, Shin, Jeonghun, Hong, Jinpyo, Kim, Se Kwon, Hwang, Chanyong. Control of the Half‐Skyrmion Hall Effect and Its Application to Adder-Subtractor. Advanced quantum technologies, vol.4, no.1, 2000060-.
Mankalale, Meghna G., Zhao, Zhengyang, Wang, Jian-Ping, Sapatnekar, Sachin S.. SkyLogic—A Proposal for a Skyrmion-Based Logic Device. IEEE transactions on electron devices, vol.66, no.4, 1990-1996.
Büttner, Felix, Lemesh, Ivan, Schneider, Michael, Pfau, Bastian, Günther, Christian M., Hessing, Piet, Geilhufe, Jan, Caretta, Lucas, Engel, Dieter, Krüger, Benjamin, Viefhaus, Jens, Eisebitt, Stefan, Beach, Geoffrey S. D.. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nature nanotechnology, vol.12, no.11, 1040-1044.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.