$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Regulatory Mechanisms of Autophagy-Targeted Antimicrobial Therapeutics Against Mycobacterial Infection 원문보기

Frontiers in cellular and infection microbiology, v.11, 2021년, pp.633360 -   

Silwal, Prashanta (Department of Microbiology, Chungnam National University School of Medicine , Daejeon , South Korea) ,  Paik, Seungwha (Department of Microbiology, Chungnam National University School of Medicine , Daejeon , South Korea) ,  Kim, Jin Kyung (Department of Microbiology, Chungnam National University School of Medicine , Daejeon , South Korea) ,  Yoshimori, Tamotsu (Department of Genetics, Graduate School of Medicine, Osaka University , Osaka , Japan) ,  Jo, Eun-Kyeong (Department of Microbiology, Chungnam National University School of Medicine , Daejeon , South Korea)

Abstract AI-Helper 아이콘AI-Helper

Mycobacterium tuberculosis (Mtb) is an intracellular pathogen causing human tuberculosis, an infectious disease that still remains as a global health problem. Autophagy, a lysosomal degradative process, has emerged as a critical pathway to restrict intracellular Mtb growth through enhancement of pha...

Keyword

참고문헌 (139)

  1. Ahmad S. Bhattacharya D. Kar S. Ranganathan A. Van Kaer L. Das G. ( 2019 ). Curcumin Nanoparticles Enhance Mycobacterium bovis BCG Vaccine Efficacy by Modulating Host Immune Responses . Infect. Immun. 87 ( 11 ), e00291–19 .   10.1128/IAI.00291-19 

  2. Ahmed S. Raqib R. Guethmundsson G. H. Bergman P. Agerberth B. Rekha R. S. ( 2020 ). Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation . Antibiot. (Basel) 9 ( 1 ), 21 .   10.3390/antibiotics9010021 

  3. Andersson A. M. Andersson B. Lorell C. Raffetseder J. Larsson M. Blomgran R. ( 2016 ). Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages . Sci. Rep. 6 , 28171 .   10.1038/srep28171 27302320 

  4. Arora G. Gagandeep Behura A. Gosain T. P. Shaliwal R. P. Kidwai S. . ( 2019 ). NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular Mycobacterium tuberculosis by Induction of Autophagy . Front. Microbiol. 10 , 3051 .   10.3389/fmicb.2019.03051 32063889 

  5. Batista L. A. F. Silva K. J. S. da Costa E. S. L. M. de Moura Y. F. Zucchi F. C. R. ( 2020 ). Tuberculosis: A granulomatous disease mediated by epigenetic factors . Tuberculosis (Edinb) 123 , 101943 .   10.1016/j.tube.2020.101943 32741528 

  6. Bergman P. Raqib R. Rekha R. S. Agerberth B. Gudmundsson G. H. ( 2020 ). Host Directed Therapy Against Infection by Boosting Innate Immunity . Front. Immunol. 11 , 1209 .   10.3389/fimmu.2020.01209 32595649 

  7. Bhardwaj M. Leli N. M. Koumenis C. Amaravadi R. K. ( 2019 ). Regulation of autophagy by canonical and non-canonical ER stress responses . Semin. Cancer Biol. 66 , 116 – 128 .   10.1016/j.semcancer.2019.11.007 31838023 

  8. Brandenburg J. Reiling N. ( 2016 ). The Wnt Blows: On the Functional Role of Wnt Signaling in Mycobacterium tuberculosis Infection and Beyond . Front. Immunol. 7 , 635 .   10.3389/fimmu.2016.00635 28082976 

  9. Campbell G. R. Spector S. A. ( 2012 ). Toll-like receptor 8 ligands activate a vitamin D mediated autophagic response that inhibits human immunodeficiency virus type 1 . PloS Pathog. 8 ( 11 ), e1003017 .   10.1371/journal.ppat.1003017 23166493 

  10. Cerni S. Shafer D. To K. Venketaraman V. ( 2019 ). Investigating the Role of Everolimus in mTOR Inhibition and Autophagy Promotion as a Potential Host-Directed Therapeutic Target in Mycobacterium tuberculosis Infection . J. Clin. Med. 8 ( 2 ), 232 .   10.3390/jcm8020232 

  11. Chai Q. Wang X. Qiang L. Zhang Y. Ge P. Lu Z. . ( 2019 ). A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy . Nat. Commun. 10 ( 1 ), 1973 .   10.1038/s41467-019-09955-8 31036822 

  12. Chai Q. Wang L. Liu C. H. Ge B. ( 2020 ). New insights into the evasion of host innate immunity by Mycobacterium tuberculosis . Cell Mol. Immunol. 17 ( 9 ), 901 – 913 .   10.1038/s41423-020-0502-z 32728204 

  13. Chandra P. Kumar D. ( 2016 ). Selective autophagy gets more selective: Uncoupling of autophagy flux and xenophagy flux in Mycobacterium tuberculosis -infected macrophages . Autophagy 12 ( 3 ), 608 – 609 .   10.1080/15548627.2016.1139263 27046255 

  14. Chandra P. Ghanwat S. Matta S. K. Yadav S. S. Mehta M. Siddiqui Z. . ( 2015 ). Mycobacterium tuberculosis Inhibits RAB7 Recruitment to Selectively Modulate Autophagy Flux in Macrophages . Sci. Rep. 5 : 16320 .   10.1038/srep16320 26541268 

  15. Chen D. Y. Chen Y. M. Lin C. F. Lo C. M. Liu H. J. Liao T. L. ( 2020 ). MicroRNA-889 Inhibits Autophagy To Maintain Mycobacterial Survival in Patients with Latent Tuberculosis Infection by Targeting TWEAK . mBio 11 ( 1 ), e03045–19 .   10.1128/mBio.03045-19 

  16. Choi J. A. Cho S. N. Lim Y. J. Lee J. Go D. Kim S. H. . ( 2018 ). Enhancement of the antimycobacterial activity of macrophages by ajoene . Innate Immun. 24 ( 1 ), 79 – 88 .   10.1177/1753425917747975 29239661 

  17. Choi S. W. Gu Y. Peters R. S. Salgame P. Ellner J. J. Timmins G. S. . ( 2018 ). Ambroxol Induces Autophagy and Potentiates Rifampin Antimycobacterial Activity . Antimicrob. Agents Chemother. 62 ( 9 ), e01019–18 .   10.1128/AAC.01019-18 

  18. Chung C. Silwal P. Kim I. Modlin R. L. Jo E. K. ( 2020 ). Vitamin D-Cathelicidin Axis: at the Crossroads between Protective Immunity and Pathological Inflammation during Infection . Immune Netw. 20 ( 2 ), e12 .   10.4110/in.2020.20.e12 32395364 

  19. Covarrubias A. J. Aksoylar H. I. Horng T. ( 2015 ). Control of macrophage metabolism and activation by mTOR and Akt signaling . Semin. Immunol. 27 ( 4 ), 286 – 296 .   10.1016/j.smim.2015.08.001 26360589 

  20. Cui J. Li M. Liu W. Zhang B. Sun B. Niu W. . ( 2019 ). Liver kinase B1 overexpression controls mycobacterial infection in macrophages via FOXO1/Wnt5a signaling . J. Cell Biochem. 120 ( 1 ), 224 – 231 .   10.1002/jcb.27322 30206971 

  21. Deretic V. ( 2008 ). Autophagy, an immunologic magic bullet: Mycobacterium tuberculosis phagosome maturation block and how to bypass it . Future Microbiol. 3 ( 5 ), 517 – 524 .   10.2217/17460913.3.5.517 18811236 

  22. Di Conza G. Ho P. C. ( 2020 ). ER Stress Responses: An Emerging Modulator for Innate Immunity . Cells 9 ( 3 ), 695 .   10.3390/cells9030695 

  23. Ding R. Wu W. Sun Z. Li Z. ( 2020 ). AMP-activated protein kinase: An attractive therapeutic target for ischemia-reperfusion injury . Eur. J. Pharmacol. 888 , 173484 .   10.1016/j.ejphar.2020.173484 32798506 

  24. Fabri M. Stenger S. Shin D. M. Yuk J. M. Liu P. T. Realegeno S. . ( 2011 ). Vitamin D is required for IFN-gamma-mediated antimicrobial activity of human macrophages . Sci. Transl. Med. 3 ( 104 ), 104ra102 .   10.1126/scitranslmed.3003045 

  25. Fang F. Ge Q. Li R. Lv J. Zhang Y. Feng A. . ( 2020 ). LPS restores protective immunity in macrophages against Mycobacterium tuberculosis via autophagy . Mol. Immunol. 124 , 18 – 24 .   10.1016/j.molimm.2020.05.001 32485435 

  26. Fatima S. Kamble S. S. Dwivedi V. P. Bhattacharya D. Kumar S. Ranganathan A. . ( 2020 ). Mycobacterium tuberculosis programs mesenchymal stem cells to establish dormancy and persistence . J. Clin. Invest. 130 ( 2 ), 655 – 661 .   10.1172/JCI128043 31647784 

  27. Franco L. H. Nair V. R. Scharn C. R. Xavier R. J. Torrealba J. R. Shiloh M. U. . ( 2017 ). The Ubiquitin Ligase Smurf1 Functions in Selective Autophagy of Mycobacterium tuberculosis and Anti-tuberculous Host Defense . Cell Host Microbe 21 ( 1 ), 59 – 72 .   10.1016/j.chom.2016.11.002 28017659 

  28. Gao Y. Wen Q. Hu S. Zhou X. Xiong W. Du X. . ( 2019 ). IL-36gamma Promotes Killing of Mycobacterium tuberculosis by Macrophages via WNT5A-Induced Noncanonical WNT Signaling . J. Immunol. 203 ( 4 ), 922 – 935 .   10.4049/jimmunol.1900169 31235551 

  29. Genestet C. Bernard-Barret F. Hodille E. Ginevra C. Ader F. Goutelle S. . ( 2018 ). Antituberculous drugs modulate bacterial phagolysosome avoidance and autophagy in Mycobacterium tuberculosis -infected macrophages . Tuberculosis (Edinb) 111 , 67 – 70 .   10.1016/j.tube.2018.05.014 30029917 

  30. Gibbons J. J. Abraham R. T. Yu K. ( 2009 ). Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth . Semin. Oncol. 36 Suppl 3 , S3 – S17 .   10.1053/j.seminoncol.2009.10.011 19963098 

  31. Giraud-Gatineau A. Coya J. M. Maure A. Biton A. Thomson M. Bernard E. M. . ( 2020 ). The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection . Elife 9 , e55692 .   10.7554/eLife.55692 32369020 

  32. Gleeson L. E. Sheedy F. J. Palsson-McDermott E. M. Triglia D. O’Leary S. M. O’Sullivan M. P. . ( 2016 ). Cutting Edge: Mycobacterium tuberculosis Induces Aerobic Glycolysis in Human Alveolar Macrophages That Is Required for Control of Intracellular Bacillary Replication . J. Immunol. 196 ( 6 ), 2444 – 2449 .   10.4049/jimmunol.1501612 26873991 

  33. Glick D. Barth S. Macleod K. F. ( 2010 ). Autophagy: cellular and molecular mechanisms . J. Pathol. 221 ( 1 ), 3 – 12 .   10.1002/path.2697 20225336 

  34. Gomes L. C. Dikic I. ( 2014 ). Autophagy in antimicrobial immunity . Mol. Cell 54 ( 2 ), 224 – 233 .   10.1016/j.molcel.2014.03.009 24766886 

  35. Gupta A. Pant G. Mitra K. Madan J. Chourasia M. K. Misra A. ( 2014 ). Inhalable particles containing rapamycin for induction of autophagy in macrophages infected with Mycobacterium tuberculosis . Mol. Pharm. 11 ( 4 ), 1201 – 1207 .   10.1021/mp4006563 24533458 

  36. Gupta A. Misra A. Deretic V. ( 2016 ). Targeted pulmonary delivery of inducers of host macrophage autophagy as a potential host-directed chemotherapy of tuberculosis . Adv. Drug Delivery Rev. 102 , 10 – 20 .   10.1016/j.addr.2016.01.016 

  37. Gutierrez M. G. Master S. S. Singh S. B. Taylor G. A. Colombo M. I. Deretic V. ( 2004 ). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages . Cell 119 ( 6 ), 753 – 766 .   10.1016/j.cell.2004.11.038 15607973 

  38. Hart L. S. Cunningham J. T. Datta T. Dey S. Tameire F. Lehman S. L. . ( 2012 ). ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth . J. Clin. Invest. 122 ( 12 ), 4621 – 4634 .   10.1172/JCI62973 23143306 

  39. Hussain T. Zhao D. Shah S. Z. A. Sabir N. Wang J. Liao Y. . ( 2019 ). Nilotinib: A Tyrosine Kinase Inhibitor Mediates Resistance to Intracellular Mycobacterium Via Regulating Autophagy . Cells 8 ( 5 ), 506 .   10.3390/cells8050506 

  40. Jhanwar-Uniyal M. Wainwright J. V. Mohan A. L. Tobias M. E. Murali R. Gandhi C. D. . ( 2019 ). Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship . Adv. Biol. Regul. 72 , 51 – 62 .   10.1016/j.jbior.2019.03.003 31010692 

  41. Jiao Y. Sun J. ( 2019 ). Bacterial Manipulation of Autophagic Responses in Infection and Inflammation . Front. Immunol. 10 , 2821 .   10.3389/fimmu.2019.02821 31849988 

  42. Jo S. H. Choi J. A. Lim Y. J. Lee J. Cho S. N. Oh S. M. . ( 2017 ). Calreticulin modulates the intracellular survival of mycobacteria by regulating ER-stress-mediated apoptosis . Oncotarget 8 ( 35 ), 58686 – 58698 .   10.18632/oncotarget.17419 28938588 

  43. Jo E. K. ( 2010 ). Innate immunity to mycobacteria: vitamin D and autophagy . Cell Microbiol. 12 ( 8 ), 1026 – 1035 .   10.1111/j.1462-5822.2010.01491.x 20557314 

  44. Junjappa R. P. Patil P. Bhattarai K. R. Kim H. R. Chae H. J. ( 2018 ). IRE1alpha Implications in Endoplasmic Reticulum Stress-Mediated Development and Pathogenesis of Autoimmune Diseases . Front. Immunol. 9 , 1289 .   10.3389/fimmu.2018.01289 29928282 

  45. Kaleagasioglu F. Ali D. M. Berger M. R. ( 2020 ). Multiple Facets of Autophagy and the Emerging Role of Alkylphosphocholines as Autophagy Modulators . Front. Pharmacol. 11 , 547 .   10.3389/fphar.2020.00547 32410999 

  46. Kaur A. Sharma S. ( 2017 ). Mammalian target of rapamycin (mTOR) as a potential therapeutic target in various diseases . Inflammopharmacology 25 ( 3 ), 293 – 312 .   10.1007/s10787-017-0336-1 28417246 

  47. Kidwai S. Park C. Y. Mawatwal S. Tiwari P. Jung M. G. Gosain T. P. . ( 2017 ). Dual Mechanism of Action of 5-Nitro-1,10-Phenanthroline against Mycobacterium tuberculosis . Antimicrob. Agents Chemother. 61 ( 11 ), e00969–17 .   10.1128/AAC.00969-17 

  48. Kim J. K. Yuk J. M. Kim S. Y. Kim T. S. Jin H. S. Yang C. S. . ( 2015 ). MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection . J. Immunol. 194 ( 11 ), 5355 – 5365 .   10.4049/jimmunol.1402557 25917095 

  49. Kim J. K. Kim Y. S. Lee H. M. Jin H. S. Neupane C. Kim S. . ( 2018 ). GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections . Nat. Commun. 9 ( 1 ), 4184 .   10.1038/s41467-018-06487-5 30305619 

  50. Kim S. Y. Yang C. S. Lee H. M. Kim J. K. Kim Y. S. Kim Y. R. . ( 2018 ). ESRRA (estrogen-related receptor alpha) is a key coordinator of transcriptional and post-translational activation of autophagy to promote innate host defense . Autophagy 14 ( 1 ), 152 – 168 .   10.1080/15548627.2017.1339001 28841353 

  51. Kim J. K. Kim T. S. Basu J. Jo E. K. ( 2017 ). MicroRNA in innate immunity and autophagy during mycobacterial infection . Cell Microbiol. 19 ( 1 ), e12687 .   10.1111/cmi.12687 

  52. Kim T. S. Jin Y. B. Kim Y. S. Kim S. Kim J. K. Lee H. M. . ( 2019 ). SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions . Autophagy 15 ( 8 ), 1356 – 1375 .   10.1080/15548627.2019.1582743 30774023 

  53. Kim Y. S. Lee H. M. Kim J. K. Yang C. S. Kim T. S. Jung M. . ( 2017 ). PPAR-alpha Activation Mediates Innate Host Defense through Induction of TFEB and Lipid Catabolism . J. Immunol. 198 ( 8 ), 3283 – 3295 .   10.4049/jimmunol.1601920 28275133 

  54. Kim Y. S. Silwal P. Kim S. Y. Yoshimori T. Jo E. K. ( 2019 ). Autophagy-activating strategies to promote innate defense against mycobacteria . Exp. Mol. Med. 51 ( 12 ), 1 – 10 .   10.1038/s12276-019-0290-7 

  55. Kimmey J. M. Huynh J. P. Weiss L. A. Park S. Kambal A. Debnath J. . ( 2015 ). Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection . Nature 528 ( 7583 ), 565 – 569 .   10.1038/nature16451 26649827 

  56. Koster S. Upadhyay S. Chandra P. Papavinasasundaram K. Yang G. Hassan A. . ( 2017 ). Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA . Proc. Natl. Acad. Sci. U.S.A. 114 ( 41 ), E8711 – E8720 .   10.1073/pnas.1707792114 28973896 

  57. Kumar R. Sahu S. K. Kumar M. Jana K. Gupta P. Gupta U. D. . ( 2016 ). MicroRNA 17-5p regulates autophagy in Mycobacterium tuberculosis -infected macrophages by targeting Mcl-1 and STAT3 . Cell Microbiol. 18 ( 5 ), 679 – 691 .   10.1111/cmi.12540 26513648 

  58. Lazarou M. Sliter D. A. Kane L. A. Sarraf S. A. Wang C. Burman J. L. . ( 2015 ). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy . Nature 524 ( 7565 ), 309 – 314 .   10.1038/nature14893 26266977 

  59. Lee J. Choi J. A. Cho S. N. Son S. H. Song C. H. ( 2019 ). Mitofusin 2-Deficiency Suppresses Mycobacterium tuberculosis Survival in Macrophages . Cells 8 ( 11 ), 1355 .   10.3390/cells8111355 

  60. Li J. Kim S. G. Blenis J. ( 2014 ). Rapamycin: one drug, many effects . Cell Metab. 19 ( 3 ), 373 – 379 .   10.1016/j.cmet.2014.01.001 24508508 

  61. Li T. Mu N. Yin Y. Yu L. Ma H. ( 2020 ). Targeting AMP-Activated Protein Kinase in Aging-Related Cardiovascular Diseases . Aging Dis. 11 ( 4 ), 967 – 977 .   10.14336/AD.2019.0901 32765957 

  62. Liang S. Wang F. Bao C. Han J. Guo Y. Liu F. . ( 2020 ). BAG2 ameliorates endoplasmic reticulum stress-induced cell apoptosis in Mycobacterium tuberculosis -infected macrophages through selective autophagy . Autophagy 16 ( 8 ), 1453 – 1467 .   10.1080/15548627.2019.1687214 31711362 

  63. Lim Y. J. Yi M. H. Choi J. A. Lee J. Han J. Y. Jo S. H. . ( 2016 ). Roles of endoplasmic reticulum stress-mediated apoptosis in M1-polarized macrophages during mycobacterial infections . Sci. Rep. 6 , 37211 .   10.1038/srep37211 27845414 

  64. Liu P. T. Stenger S. Tang D. H. Modlin R. L. ( 2007 ). Cutting edge: vitamin D-mediated human antimicrobial activity against Mycobacterium tuberculosis is dependent on the induction of cathelicidin . J. Immunol. 179 ( 4 ), 2060 – 2063 .   10.4049/jimmunol.179.4.2060 17675463 

  65. Liu D. Chen L. Zhao H. Vaziri N. D. Ma S. C. Zhao Y. Y. ( 2019 ). Small molecules from natural products targeting the Wnt/beta-catenin pathway as a therapeutic strategy . BioMed. Pharmacother. 117 , 108990 .   10.1016/j.biopha.2019.108990 31226638 

  66. Ljungberg J. K. Kling J. C. Tran T. T. Blumenthal A. ( 2019 ). Functions of the WNT Signaling Network in Shaping Host Responses to Infection . Front. Immunol. 10 , 2521 .   10.3389/fimmu.2019.02521 31781093 

  67. Maiti D. Bhattacharyya A. Basu J. ( 2001 ). Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway . J. Biol. Chem. 276 ( 1 ), 329 – 333 .   10.1074/jbc.M002650200 11020382 

  68. Mannick J. B. Del Giudice G. Lattanzi M. Valiante N. M. Praestgaard J. Huang B. . ( 2014 ). mTOR inhibition improves immune function in the elderly . Sci. Transl. Med. 6 ( 268 ), 268ra179 .   10.1126/scitranslmed.3009892 

  69. Manzanillo P. S. Ayres J. S. Watson R. O. Collins A. C. Souza G. Rae C. S. . ( 2013 ). The ubiquitin ligase parkin mediates resistance to intracellular pathogens . Nature 501 ( 7468 ), 512 – 516 .   10.1038/nature12566 24005326 

  70. Martinez J. Malireddi R. K. Lu Q. Cunha L. D. Pelletier S. Gingras S. . ( 2015 ). Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins . Nat. Cell Biol. 17 ( 7 ), 893 – 906 .   10.1038/ncb3192 26098576 

  71. Martinon F. Glimcher L. H. ( 2011 ). Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum . Curr. Opin. Immunol. 23 ( 1 ), 35 – 40 .   10.1016/j.coi.2010.10.016 21094031 

  72. Mendes A. C. Ciccone M. Gazolla B. Bahia D. ( 2020 ). Epithelial Haven and Autophagy Breakout in Gonococci Infection . Front. Cell Dev. Biol. 8 , 439 .   10.3389/fcell.2020.00439 32582714 

  73. Napolitano G. Ballabio A. ( 2016 ). TFEB at a glance . J. Cell Sci. 129 ( 13 ), 2475 – 2481 .   10.1242/jcs.146365 27252382 

  74. Nouri-Vaskeh M. Sadeghifard S. Saleh P. Farhadi J. Amraii M. Ansarin K. ( 2019 ). Vitamin D Deficiency among Patients with Tuberculosis: a Cross-Sectional Study in Iranian-Azari Population . Tanaffos 18 ( 1 ), 11 – 17 . 31423135 

  75. Ouimet M. Koster S. Sakowski E. Ramkhelawon B. van Solingen C. Oldebeken S. . ( 2016 ). Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism . Nat. Immunol. 17 ( 6 ), 677 – 686 .   10.1038/ni.3434 27089382 

  76. Ouyang Q. Zhang K. Lin D. Feng C. G. Cai Y. Chen X. ( 2020 ). Bazedoxifene Suppresses Intracellular Mycobacterium tuberculosis Growth by Enhancing Autophagy . mSphere 5 ( 2 ), e00124–20 .   10.1128/mSphere.00124-20 

  77. Padhi A. Pattnaik K. Biswas M. Jagadeb M. Behera A. Sonawane A. ( 2019 ). Mycobacterium tuberculosis LprE Suppresses TLR2-Dependent Cathelicidin and Autophagy Expression to Enhance Bacterial Survival in Macrophages . J. Immunol. 203 ( 10 ), 2665 – 2678 .   10.4049/jimmunol.1801301 31619537 

  78. Pahari S. Negi S. Aqdas M. Arnett E. Schlesinger L. S. Agrewala J. N. ( 2020 ). Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis . Autophagy 16 ( 6 ), 1021 – 1043 .   10.1080/15548627.2019.1658436 31462144 

  79. Paik S. Kim J. K. Chung C. Jo E. K. ( 2019 ). Autophagy: A new strategy for host-directed therapy of tuberculosis . Virulence 10 ( 1 ), 448 – 459 .   10.1080/21505594.2018.1536598 30322337 

  80. Painter J. D. Galle-Treger L. Akbari O. ( 2020 ). Role of Autophagy in Lung Inflammation . Front. Immunol. 11 , 1337 .   10.3389/fimmu.2020.01337 32733448 

  81. Palucci I. Delogu G. ( 2018 ). Host Directed Therapies for Tuberculosis: Futures Strategies for an Ancient Disease . Chemotherapy 63 ( 3 ), 172 – 180 .   10.1159/000490478 30032143 

  82. Park K. Lee S. E. Shin K. O. Uchida Y. ( 2019 ). Insights into the role of endoplasmic reticulum stress in skin function and associated diseases . FEBS J. 286 ( 2 ), 413 – 425 .   10.1111/febs.14739 30586218 

  83. Pi J. Shen L. Yang E. Shen H. Huang D. Wang R. . ( 2020 ). Macrophage-Targeted Isoniazid-Selenium Nanoparticles Promote Antimicrobial Immunity and Synergize Bactericidal Destruction of Tuberculosis Bacilli . Angew Chem. Int. Ed Engl. 59 ( 8 ), 3226 – 3234 .   10.1002/anie.201912122 31756258 

  84. Pilarski A. Penn N. Ratnakumar S. Barker R. D. Milburn H. J. ( 2016 ). Variation in vitamin D deficiency among tuberculosis patients by ethnic group and geographical region of birth: evidence from a diverse south London population . Eur. Respir. J. 48 ( 5 ), 1507 – 1510 .   10.1183/13993003.00057-2016 27799393 

  85. Puertollano R. Ferguson S. M. Brugarolas J. Ballabio A. ( 2018 ). The complex relationship between TFEB transcription factor phosphorylation and subcellular localization . EMBO J. 37 ( 11 ), e98804 .   10.15252/embj.201798804 29764979 

  86. Qian M. Fang X. Wang X. ( 2017 ). Autophagy and inflammation . Clin. Transl. Med. 6 ( 1 ), 24 .   10.1186/s40169-017-0154-5 28748360 

  87. Qian J. Su S. Liu P. ( 2020 ). Experimental Approaches in Delineating mTOR Signaling . Genes (Basel) 11 ( 7 ), 738 .   10.3390/genes11070738 

  88. Rabinowitz J. D. White E. ( 2010 ). Autophagy and metabolism . Science 330 ( 6009 ), 1344 – 1348 .   10.1126/science.1193497 21127245 

  89. Rashid H. O. Yadav R. K. Kim H. R. Chae H. J. ( 2015 ). ER stress: Autophagy induction, inhibition and selection . Autophagy 11 ( 11 ), 1956 – 1977 .   10.1080/15548627.2015.1091141 26389781 

  90. Rekha R. S. Rao Muvva S. S. Wan M. Raqib R. Bergman P. Brighenti S. . ( 2015 ). Phenylbutyrate induces LL-37-dependent autophagy and intracellular killing of Mycobacterium tuberculosis in human macrophages . Autophagy 11 ( 9 ), 1688 – 1699 .   10.1080/15548627.2015.1075110 26218841 

  91. Rekha R. S. Mily A. Sultana T. Haq A. Ahmed S. Mostafa Kamal S. M. . ( 2018 ). Immune responses in the treatment of drug-sensitive pulmonary tuberculosis with phenylbutyrate and vitamin D3 as host directed therapy . BMC Infect. Dis. 18 ( 1 ), 303 .   10.1186/s12879-018-3203-9 29973153 

  92. Roczniak-Ferguson A. Petit C. S. Froehlich F. Qian S. Ky J. Angarola B. . ( 2012 ). The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis . Sci. Signal 5 ( 228 ), ra42 .   10.1126/scisignal.2002790 22692423 

  93. Rogan M. R. Patterson L. L. Wang J. Y. McBride J. W. ( 2019 ). Bacterial Manipulation of Wnt Signaling: A Host-Pathogen Tug-of-Wnt . Front. Immunol. 10 , 2390 .   10.3389/fimmu.2019.02390 31681283 

  94. Romagnoli A. Etna M. P. Giacomini E. Pardini M. Remoli M. E. Corazzari M. . ( 2012 ). ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells . Autophagy 8 ( 9 ), 1357 – 1370 .   10.4161/auto.20881 22885411 

  95. Rouschop K. M. van den Beucken T. Dubois L. Niessen H. Bussink J. Savelkouls K. . ( 2010 ). The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5 . J. Clin. Invest. 120 ( 1 ), 127 – 141 .   10.1172/JCI40027 20038797 

  96. Ruiz-Tagle C. Naves R. Balcells M. E. ( 2020 ). Unraveling the Role of MicroRNAs in Mycobacterium tuberculosis Infection and Disease: Advances and Pitfalls . Infect. Immun. 88 ( 3 ), e00649–19 .   10.1128/IAI.00649-19 

  97. Ryter S. W. Cloonan S. M. Choi A. M. ( 2013 ). Autophagy: a critical regulator of cellular metabolism and homeostasis . Mol. Cells 36 ( 1 ), 7 – 16 .   10.1007/s10059-013-0140-8 23708729 

  98. Sabir N. Hussain T. Shah S. Z. A. Peramo A. Zhao D. Zhou X. ( 2018 ). miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy . Front. Microbiol. 9 , 602 .   10.3389/fmicb.2018.00602 29651283 

  99. Sahu S. K. Kumar M. Chakraborty S. Banerjee S. K. Kumar R. Gupta P. . ( 2017 ). MicroRNA 26a (miR-26a)/KLF4 and CREB-C/EBPbeta regulate innate immune signaling, the polarization of macrophages and the trafficking of Mycobacterium tuberculosis to lysosomes during infection . PloS Pathog. 13 ( 5 ), e1006410 .   10.1371/journal.ppat.1006410 28558034 

  100. Sanjuan M. A. Milasta S. Green D. R. ( 2009 ). Toll-like receptor signaling in the lysosomal pathways . Immunol. Rev. 227 ( 1 ), 203 – 220 .   10.1111/j.1600-065X.2008.00732.x 19120486 

  101. Schmeisser K. Parker J. A. ( 2019 ). Pleiotropic Effects of mTOR and Autophagy During Development and Aging . Front. Cell Dev. Biol. 7 , 192 .   10.3389/fcell.2019.00192 31572724 

  102. Shi L. Salamon H. Eugenin E. A. Pine R. Cooper A. Gennaro M. L. ( 2015 ). Infection with Mycobacterium tuberculosis induces the Warburg effect in mouse lungs . Sci. Rep. 5 : 18176 .   10.1038/srep18176 26658723 

  103. Shin D. M. Jeon B. Y. Lee H. M. Jin H. S. Yuk J. M. Song C. H. . ( 2010 a). Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling . PloS Pathog. 6 ( 12 ), e1001230 .   10.1371/journal.ppat.1001230 21187903 

  104. Shin D. M. Yuk J. M. Lee H. M. Lee S. H. Son J. W. Harding C. V. . ( 2010 b). Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling . Cell Microbiol. 12 ( 11 ), 1648 – 1665 .   10.1111/j.1462-5822.2010.01497.x 20560977 

  105. Silva T. Moreira A. C. Nazmi K. Moniz T. Vale N. Rangel M. . ( 2017 ). Lactoferricin Peptides Increase Macrophages’ Capacity To Kill Mycobacterium avium . mSphere 2 ( 4 ), e00301–17 .   10.1128/mSphere.00301-17 

  106. Silva-Garcia O. Valdez-Alarcon J. J. Baizabal-Aguirre V. M. ( 2019 ). Wnt/beta-Catenin Signaling as a Molecular Target by Pathogenic Bacteria . Front. Immunol. 10 , 2135 .   10.3389/fimmu.2019.02135 31611869 

  107. Silwal P. Kim J. K. Yuk J. M. Jo E. K. ( 2018 ). AMP-Activated Protein Kinase and Host Defense against Infection . Int. J. Mol. Sci. 19 ( 11 ), 3495 .   10.3390/ijms19113495 

  108. Silwal P. Kim Y. S. Basu J. Jo E. K. ( 2020 ). The roles of microRNAs in regulation of autophagy during bacterial infection . Semin. Cell Dev. Biol. 101 , 51 – 58 .   10.1016/j.semcdb.2019.07.011 31351226 

  109. Singh P. Subbian S. ( 2018 ). Harnessing the mTOR Pathway for Tuberculosis Treatment . Front. Microbiol. 9 , 70 .   10.3389/fmicb.2018.00070 29441052 

  110. Singh N. Kansal P. Ahmad Z. Baid N. Kushwaha H. Khatri N. . ( 2018 ). Antimycobacterial effect of IFNG (interferon gamma)-induced autophagy depends on HMOX1 (heme oxygenase 1)-mediated increase in intracellular calcium levels and modulation of PPP3/calcineurin-TFEB (transcription factor EB) axis . Autophagy 14 ( 6 ), 972 – 991 .   10.1080/15548627.2018.1436936 29457983 

  111. Sinigaglia A. Peta E. Riccetti S. Venkateswaran S. Manganelli R. Barzon L. ( 2020 ). Tuberculosis-Associated MicroRNAs: From Pathogenesis to Disease Biomarkers . Cells 9 ( 10 ), 2160 .   10.3390/cells9102160 

  112. Sivangala Thandi R. Radhakrishnan R. K. Tripathi D. Paidipally P. Azad A. K. Schlesinger L. S. . ( 2020 ). Ornithine-A urea cycle metabolite enhances autophagy and controls Mycobacterium tuberculosis infection . Nat. Commun. 11 ( 1 ), 3535 .   10.1038/s41467-020-17310-5 32669568 

  113. Smulan L. J. Martinez N. Kiritsy M. C. Kativhu C. Cavallo K. Sassetti C. M. . ( 2021 ). Sirtuin 3 Downregulation in Mycobacterium tuberculosis -Infected Macrophages Reprograms Mitochondrial Metabolism and Promotes Cell Death . mBio 12 ( 1 ), e03140–20 .   10.1128/mBio.03140-20 

  114. Sprenkeler E. G. Gresnigt M. S. van de Veerdonk F. L. ( 2016 ). LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against Aspergillus fumigatus . Cell Microbiol. 18 ( 9 ), 1208 – 1216 .   10.1111/cmi.12616 27185357 

  115. Stanley S. A. Barczak A. K. Silvis M. R. Luo S. S. Sogi K. Vokes M. . ( 2014 ). Identification of host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth . PloS Pathog. 10 ( 2 ), e1003946 .   10.1371/journal.ppat.1003946 24586159 

  116. Sukhorukov V. N. Khotina V. A. Bagheri Ekta M. Ivanova E. A. Sobenin I. A. Orekhov A. N. ( 2020 ). Endoplasmic Reticulum Stress in Macrophages: The Vicious Circle of Lipid Accumulation and Pro-Inflammatory Response . Biomedicines 8 ( 7 ), 210 .   10.3390/biomedicines8070210 

  117. Talat N. Perry S. Parsonnet J. Dawood G. Hussain R. ( 2010 ). Vitamin d deficiency and tuberculosis progression . Emerg. Infect. Dis. 16 ( 5 ), 853 – 855 .   10.3201/eid1605.091693 20409383 

  118. Tameire F. Verginadis I. I. Koumenis C. ( 2015 ). Cell intrinsic and extrinsic activators of the unfolded protein response in cancer: Mechanisms and targets for therapy . Semin. Cancer Biol. 33 , 3 – 15 .   10.1016/j.semcancer.2015.04.002 25920797 

  119. Tong X. Ganta R. R. Liu Z. ( 2020 ). AMP-activated protein kinase (AMPK) regulates autophagy, inflammation and immunity and contributes to osteoclast differentiation and functionabs . Biol. Cell 112 ( 9 ), 251 – 264 .   10.1111/boc.202000008 32445585 

  120. Villasenor T. Madrid-Paulino E. Maldonado-Bravo R. Urban-Aragon A. Perez-Martinez L. Pedraza-Alva G. ( 2017 ). Activation of the Wnt Pathway by Mycobacterium tuberculosis : A Wnt-Wnt Situation . Front. Immunol. 8 , 50 .   10.3389/fimmu.2017.00050 28203237 

  121. Wan M. Tang X. Rekha R. S. Muvva S. Brighenti S. Agerberth B. . ( 2018 ). Prostaglandin E2 suppresses hCAP18/LL-37 expression in human macrophages via EP2/EP4: implications for treatment of Mycobacterium tuberculosis infection . FASEB J. 32 ( 5 ), 2827 – 2840 .   10.1096/fj.201701308 29401596 

  122. Wang H. Liu Y. Wang D. Xu Y. Dong R. Yang Y. . ( 2019 ). The Upstream Pathway of mTOR-Mediated Autophagy in Liver Diseases . Cells 8 ( 12 ), 1597 .   10.3390/cells8121597 

  123. Watson R. O. Manzanillo P. S. Cox J. S. ( 2012 ). Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway . Cell 150 ( 4 ), 803 – 815 .   10.1016/j.cell.2012.06.040 22901810 

  124. Watson R. O. Bell S. L. MacDuff D. A. Kimmey J. M. Diner E. J. Olivas J. . ( 2015 ). The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy . Cell Host Microbe 17 ( 6 ), 811 – 819 .   10.1016/j.chom.2015.05.004 26048136 

  125. WHO ( 2020 ). World Health Organization Global tuberculosis Report 2020 ( Geneva, 2020 : World Health Organization ). 

  126. Wu X. Zhang J. Ma C. Li W. Zeng J. Wang Y. . ( 2019 ). A role for Wnt/beta-catenin signalling in suppressing Bacillus Calmette-Guerin-induced macrophage autophagy . Microb. Pathog. 127 , 277 – 287 .   10.1016/j.micpath.2018.12.016 30550847 

  127. Yan M. Li G. An J. ( 2017 ). Discovery of small molecule inhibitors of the Wnt/beta-catenin signaling pathway by targeting beta-catenin/Tcf4 interactions . Exp. Biol. Med. (Maywood) 242 ( 11 ), 1185 – 1197 .   10.1177/1535370217708198 28474989 

  128. Yang T. Ge B. ( 2018 ). miRNAs in immune responses to Mycobacterium tuberculosis infection . Cancer Lett. 431 , 22 – 30 .   10.1016/j.canlet.2018.05.028 29803788 

  129. Yang C. S. Song C. H. Lee J. S. Jung S. B. Oh J. H. Park J. . ( 2006 ). Intracellular network of phosphatidylinositol 3-kinase, mammalian target of the rapamycin/70 kDa ribosomal S6 kinase 1, and mitogen-activated protein kinases pathways for regulating mycobacteria-induced IL-23 expression in human macrophages . Cell Microbiol. 8 ( 7 ), 1158 – 1171 .   10.1111/j.1462-5822.2006.00699.x 16819968 

  130. Yang C. S. Kim J. J. Lee H. M. Jin H. S. Lee S. H. Park J. H. . ( 2014 ). The AMPK-PPARGC1A pathway is required for antimicrobial host defense through activation of autophagy . Autophagy 10 ( 5 ), 785 – 802 .   10.4161/auto.28072 24598403 

  131. Yang R. Yang E. Shen L. Modlin R. L. Shen H. Chen Z. W. ( 2018 ). IL-12+IL-18 Cosignaling in Human Macrophages and Lung Epithelial Cells Activates Cathelicidin and Autophagy, Inhibiting Intracellular Mycobacterial Growth . J. Immunol. 200 ( 7 ), 2405 – 2417 .   10.4049/jimmunol.1701073 29453279 

  132. Yao S. Miao C. Tian H. Sang H. Yang N. Jiao P. . ( 2014 ). Endoplasmic reticulum stress promotes macrophage-derived foam cell formation by up-regulating cluster of differentiation 36 (CD36) expression . J. Biol. Chem. 289 ( 7 ), 4032 – 4042 .   10.1074/jbc.M113.524512 24366867 

  133. Yazbeck V. Y. Buglio D. Georgakis G. V. Li Y. Iwado E. Romaguera J. E. . ( 2008 ). Temsirolimus downregulates p21 without altering cyclin D1 expression and induces autophagy and synergizes with vorinostat in mantle cell lymphoma . Exp. Hematol. 36 ( 4 ), 443 – 450 .   10.1016/j.exphem.2007.12.008 18343280 

  134. Yuan Q. Chen H. Yang Y. Fu Y. Yi Z. ( 2020 ). miR-18a promotes Mycobacterial survival in macrophages via inhibiting autophagy by down-regulation of ATM . J. Cell Mol. Med. 24 ( 2 ), 2004 – 2012 .   10.1111/jcmm.14899 31845528 

  135. Yuk J. M. Shin D. M. Lee H. M. Yang C. S. Jin H. S. Kim K. K. . ( 2009 ). Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin . Cell Host Microbe 6 ( 3 ), 231 – 243 .   10.1016/j.chom.2009.08.004 19748465 

  136. Zhang Q. Sun J. Wang Y. He W. Wang L. Zheng Y. . ( 2017 ). Antimycobacterial and Anti-inflammatory Mechanisms of Baicalin via Induced Autophagy in Macrophages Infected with Mycobacterium tuberculosis . Front. Microbiol. 8 , 2142 .   10.3389/fmicb.2017.02142 29163427 

  137. Zhao T. Wu K. Hogstrand C. Xu Y. H. Chen G. H. Wei C. C. . ( 2020 ). Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPARgamma pathways . Cell Mol. Life Sci. 77 ( 10 ), 1987 – 2003 .   10.1007/s00018-019-03263-6 31392349 

  138. Zou Z. Tao T. Li H. Zhu X. ( 2020 ). mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges . Cell Biosci. 10 , 31 .   10.1186/s13578-020-00396-1 32175074 

  139. Zumla A. Maeurer M. Host-Directed Therapies Network, C . ( 2015 ). Host-Directed Therapies for Tackling Multi-Drug Resistant Tuberculosis: Learning From the Pasteur-Bechamp Debates . Clin. Infect. Dis. 61 ( 9 ), 1432 – 1438 .   10.1093/cid/civ631 26219693 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로