$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Enhancement of Catalytic Activity and Durability of Pt Nanoparticle through Strong Chemical Interaction with Electrically Conductive Support of Magnéli Phase Titanium Oxide 원문보기

Nanomaterials, v.11 no.4, 2021년, pp.829 -   

Dogan, Didem C. (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea) ,  Choi, Jiye (didemcil@gmail.com (D.C.D.)) ,  Seo, Min Ho (jiye1120@kier.re.kr (J.C.)) ,  Lee, Eunjik (ejlee21@kier.re.kr (E.L.)) ,  Jung, Namgee (jimmyim@kier.re.kr (S.-D.Y.)) ,  Yim, Sung-Dae (thyang@kier.re.kr (T.-H.Y.)) ,  Yang, Tae-Hyun (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea) ,  Park, Gu-Gon (didemcil@gmail.com (D.C.D.))

Abstract AI-Helper 아이콘AI-Helper

In this study, we address the catalytic performance of variously sized Pt nanoparticles (NPs) (from 1.7 to 2.9 nm) supported on magnéli phase titanium oxide (MPTO, Ti4O7) along with commercial solid type carbon (VXC-72R) for oxygen reduction reaction (ORR). Key idea is to utilize a robust and...

Keyword

참고문헌 (76)

  1. 1. Rabis A. Rodriguez P. Schmidt T.J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges ACS Catal. 2012 2 864 890 10.1021/cs3000864 

  2. 2. Carter D. Ryan M. Wing J. The Fuel Cell Industry Review 2013 Platin. Met. Rev. 2013 57 310 10.1595/147106713x674292 

  3. 3. Yang Y. Song Y. Sun H. Xiang D. Jiang Q. Lu Z. He H. Huang H. Rh-decorated three-dimensional graphene aerogel networks as highly-efficient electrocatalysts for direct methanol fuel cells Front. Energy Res. 2020 8 8 10.3389/fenrg.2020.00060 

  4. 4. Zheng H.B. An L. Zheng Y. Qu C. Fang Y. Liu Q. Dang D. Tuning the catalytic activity of Ir@Pt nanoparticles through controlling Ir core size on cathode performance for PEM fuel cell application Front. Chem. 2018 6 299 10.3389/fchem.2018.00299 30094230 

  5. 5. Noel J.M. Yu Y. Mirkin M.V. Dissolution of Pt at moderately negative potentials during oxygen reduction in water and organic media Langmuir 2013 29 1346 1350 10.1021/la304694d 23323756 

  6. 6. Brouzgou A. Seretis A. Song S. Shen P.K. Tsiakaras P. CO tolerance and durability study of PtMe(Me = Ir or Pd) electrocatalysts for H2-PEMFC application Int. J. Hydrogen Energy 2020 10.1016/j.ijhydene.2020.07.224 

  7. 7. Tian Z.Q. Lim S.H. Poh C.K. Tang Z. Xia Z. Luo Z. Shen P.K. Chua D. Feng Y.P. Shen Z. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells Adv. Energy Mater. 2011 1 1205 1214 10.1002/aenm.201100371 

  8. 8. Murata S. Imanishi M. Hasegawa S. Namba R. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells J. Power Sources 2014 253 104 113 10.1016/j.jpowsour.2013.11.073 

  9. 9. Hwang S.M. Park J.H. Lim S. Jung D.H. Guim H. Yoon Y.G. Yim S.D. Kim T.Y. Designing an ultrathin silica layer for highly durable carbon nanofibers as the carbon support in polymer electrolyte fuel cells Nanoscale 2014 6 12111 12119 10.1039/C4NR04293J 25196022 

  10. 10. Ghosh A. Basu S. Verma A. Graphene and functionalized graphene supported platinum catalyst for PEMFC Fuel Cells 2013 13 355 363 10.1002/fuce.201300039 

  11. 11. Antolini E. Graphene as a new carbon support for low-temperature fuel cell catalysts Appl. Catal. B Environ. 2012 123–124 52 68 10.1016/j.apcatb.2012.04.022 

  12. 12. Zhong X. Ye S. Tang J. Zhu Y. Wu D. Gu M. Pan H. Xu B. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery Appl. Catal. B Environ. 2021 286 119891 10.1016/j.apcatb.2021.119891 

  13. 13. Krishnan P. Advani S. Prasad A.K. Magneli phase Ti n O2n—1 as corrosion-resistant PEM fuel cell catalyst support J. Solid State Chem. 2012 16 2515 2521 10.1007/s10008-012-1663-1 

  14. 14. Yao C. Li F. Li X. Xia D. Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis J. Mater. Chem. 2012 22 16560 10.1039/c2jm32866f 

  15. 15. Kakinuma K. Chino Y. Senoo Y. Uchida M. Kamino T. Uchida H. Deki S. Watanabe M. Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2–δ support materials with aggregated structure by rotating disk electrode and fuel cell measurements Electrochim. Acta. 2013 110 316 324 10.1016/j.electacta.2013.06.127 

  16. 16. Shao Y. Liu J. Wang Y. Lin Y. Novel catalyst support materials for PEMfuelcells: Current status and future prospects J. Mater. Chem. 2009 19 46 59 10.1039/B808370C 

  17. 17. Yang D.H. Sui X.L. Zhao L. Huang G.S. Gu D.M. Wang Z.B. Pt supported on carbon-coating antimony Tin oxide as anode catalyst for direct methanol fuel cell Fuel Cells 2018 18 763 770 10.1002/fuce.201800039 

  18. 18. Naik K.M. Higuchi E. Inoue H. Two-dimensional oxygen-deficient TiO 2 nanosheets-supported Pt nanoparticles as durable catalyst for oxygen reduction reaction in proton exchange membrane fuel cells J. Power Sources 2020 455 227972 10.1016/j.jpowsour.2020.227972 

  19. 19. Alipour Moghadam Esfahani R. Ebralidze I.I. Specchia S. Easton E.B. A fuel cell catalyst support based on doped titanium suboxides with enhanced conductivity, durability and fuel cell performance J. Mater. Chem. A 2018 6 14805 14815 10.1039/C8TA02470G 

  20. 20. Jeon Y. Ji Y. Cho Y.I. Lee C. Park D.H. Shul Y.G. Oxide-carbon nanofibrous composite support for a highly active and stable polymer electrolyte membrane fuel-cell catalyst ACS Nano 2018 12 6819 6829 10.1021/acsnano.8b02040 29966089 

  21. 21. Sullivan M.T. Alipour Moghadam Esfahani R. Easton E.B. Conductive metal oxide-based fuel cell catalyst supports prepared by doping TiO 2 with Si understanding the role of Si content EXS Trans. 2020 97 659 670 10.1149/09707.0659ecst 

  22. 22. Wang J. Yin G. Shao Y. Zhang S. Wang Z. Gao Y. Effect of carbon black support corrosion on the durability of Pt/C catalyst J. Power Sources 2007 171 331 339 10.1016/j.jpowsour.2007.06.084 

  23. 23. Maass S. Finsterwalder F. Frank G. Hartmann R. Merten C. Carbon support oxidation in PEM fuel cell cathodes J. Power Sources 2008 176 444 451 10.1016/j.jpowsour.2007.08.053 

  24. 24. Tang H. Qi Z. Ramani M. Elter J.F. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode J. Power Sources 2006 158 1306 1312 10.1016/j.jpowsour.2005.10.059 

  25. 25. Hacker V. Baumgartner W. Wallnöfer E. Schaffer T. Besenhard J.O. Characterization of carbon nanofiber-based fuel cell electrodes EXS Trans. 2006 3 295 10.1149/1.2356148 

  26. 26. Bartholomew R.F. Frankl D.R. Electrical properties of some titanium oxides Phys. Rev. B 1969 187 828 833 10.1103/PhysRev.187.828 

  27. 27. Chen G. Bare S.R. Mallouk T.E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells J. Electrochem. Soc. 2002 149 A1092 10.1149/1.1491237 

  28. 28. Ioroi T. Siroma Z. Fujiwara N. Yamazaki S. Yasuda K. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells Electrochem. Commun. 2005 7 183 188 10.1016/j.elecom.2004.12.007 

  29. 29. Ioroi T. Senoh H. Yamazaki S. Siroma Z. Fujiwara N. Yasuda K. Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials J. Electrochem. Soc. 2008 155 B321 10.1149/1.2833310 

  30. 30. Dogan D.C. Hwang S.M. Jang E.H. Yim S.D. Sohn Y.J. Kim S.H. Yang T.H. Park G.G. Highly platinum-loaded Magneli phase titanium oxides as a high voltage tolerant electrocatalyst for polymer electrolyte fuel cells J. Nanosci. Nanotechnol. 2015 15 6988 6994 10.1166/jnn.2015.10549 26716272 

  31. 31. Islam J. Kim S.K. Kim K.H. Lee E. Park G.G. Enhanced durability of Pt/C catalyst by coating carbon black with silica for oxygen reduction reaction Int. J. Hydrogen Energy 2021 46 1133 1143 10.1016/j.ijhydene.2020.09.194 

  32. 32. Warschkow O. Wang Y. Subramanian A. Asta M. Marks L.D. Structure and local-equilibrium thermodynamics of the c(2x2) reconstruction of rutile TiO 2 (100) Phys. Rev. Lett. 2008 100 086102 10.1103/PhysRevLett.100.086102 18352638 

  33. 33. Wang Y. Warschkow O. Marks L.D. Surface evolution of rutile TiO 2 (100) in an oxidizing environment Surf. Sci. 2007 601 63 67 10.1016/j.susc.2006.09.005 

  34. 34. Yoshida K. Kawai T. Nambara T. Tanemura S. Saitoh K. Tanaka N. Direct observation of oxygen atoms in rutile titanium dioxide by spherical aberration corrected high-resolution transmission electron microscopy Nanotechnology 2006 17 3944 3950 10.1088/0957-4484/17/15/056 

  35. 35. Kresse G. Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 1996 54 11169 11186 10.1103/PhysRevB.54.11169 

  36. 36. Blochl P.E. Projector augmented-wave method Phys. Rev. B Condens. Matter 1994 50 17953 17979 10.1103/PhysRevB.50.17953 9976227 

  37. 37. Kresse G. Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 1999 59 1758 1775 10.1103/PhysRevB.59.1758 

  38. 38. Perdew J.P. Burke K. Ernzerhof M. Generalized gradient approximation made simple Phys. Rev. Lett. 1996 77 3865 3868 10.1103/PhysRevLett.77.3865 10062328 

  39. 39. Blochl P.E. Jepsen O. Andersen O.K. Improved tetrahedron method for Brillouin-zone integrations Phys. Rev. B Condens. Matter 1994 49 16223 16233 10.1103/PhysRevB.49.16223 10010769 

  40. 40. Wang Y.J. Wilkinson D.P. Zhang J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts Chem. Rev. 2011 111 7625 7651 10.1021/cr100060r 21919529 

  41. 41. Feldberg S.W. Enke C.G. Bricker C.E. Formation and dissolution of platinum oxide film: Mechanism and kinetics J. Electrochem. Soc. 1963 110 826 834 10.1149/1.2425880 

  42. 42. Seo M.H. Choi S.M. Lim E.J. Kwon I.H. Seo J.K. Noh S.H. Kim W.B. Han B. Toward new fuel cell support materials: A theoretical and experimental study of nitrogen-doped graphene ChemSusChem 2014 7 2609 2620 10.1002/cssc.201402258 25044873 

  43. 43. Higgins D. Hoque M.A. Seo M.H. Wang R. Hassan F. Choi J.Y. Pritzker M. Yu A. Zhang J. Chen Z. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction Adv. Funct. Mater. 2014 24 4325 4336 10.1002/adfm.201400161 

  44. 44. Seo M.H. Park H.W. Lee D.U. Park M.G. Chen Z. Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab Initio studies ACS Catal. 2015 5 4337 4344 10.1021/acscatal.5b00114 

  45. 45. Lundqvist B.I. Gunnarsson O. Hjelmberg H. Theoretical description of molecure-metal interaction and surface reactions Surf. Sci. 1979 89 196 225 10.1016/0039-6028(79)90608-3 

  46. 46. Hammer B. Norskov J.K. Why gold is the noblest of all the metals Lett. Nat. 1995 376 238 240 10.1038/376238a0 

  47. 47. Hammer B. Norskov J.K. Theoretical Surface Science and Catalysis—Calculations and Concepts Adv. Catal. 2000 45 71 129 

  48. 48. Calle-Vallejo F. Díaz-Morales O.A. Kolb M.J. Koper M.T.M. Why Is bulk thermochemistry a good descriptor for the electrocatalytic activity of rransition metal oxides? ACS Catal. 2015 5 869 873 10.1021/cs5016657 

  49. 49. Calle-Vallejo F. Martinez J.I. Garcia-Lastra J.M. Mogensen M. Rossmeisl J. Trends in stability of perovskite oxides Angew. Chem. Int. Ed. 2010 49 7699 7701 10.1002/anie.201002301 

  50. 50. Calle-Vallejo F. Inoglu N.G. Su H.Y. Martínez J.I. Man I.C. Koper M.T.M. Kitchin J.R. Rossmeisl J. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides Chem. Sci. 2013 4 1245 10.1039/c2sc21601a 

  51. 51. Bader R.F. Atoms in Molecules Wiley online Library Hoboken, NJ, USA 1990 

  52. 52. Seo J.K. Khetan A. Seo M.H. Kim H. Han B. First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications J. Power Sources 2013 238 137 143 10.1016/j.jpowsour.2013.03.077 

  53. 53. Jinnouchi R. Toyoda E. Hatanaka T. Morimoto Y. First principles calculations on site-dependent dissolution potentials of supported and unsupported Pt particles J. Phys. Chem. C 2010 114 17557 17568 10.1021/jp106593d 

  54. 54. Noh S.H. Seo M.H. Seo J.K. Fischer P. Han B. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts Nanoscale 2013 5 8625 8633 10.1039/c3nr02611f 23897215 

  55. 55. Tang L. Han B. Persson K. Friesen C. He T. Sieradzki K. Ceder G. Electrochemical stability of nanometer-scale Pt particles in acidic environments J. Am. Chem. Soc. 2009 132 596 600 10.1021/ja9071496 

  56. 56. Shao M. Liu P. Zhang J. Adzic R. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction J. Phys. Chem. B 2007 111 6772 6775 10.1021/jp0689971 17441757 

  57. 57. Hammer B. Norskov J.K. Electronic factors determining the reactivity of metal surfaces Surf. Sci. 1995 343 211 220 10.1016/0039-6028(96)80007-0 

  58. 58. Demirci U.B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells J. Power Sources 2007 173 11 18 10.1016/j.jpowsour.2007.04.069 

  59. 59. Shao M. Liu P. Zhang J. Sasaki K. Vukmirovic M.B. Adzic R.R. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction Langmuir 2006 22 10409 10415 10.1021/la0610553 17129009 

  60. 60. Greeley J. Mavrikakis M. Alloy catalysts designed from first principles Nat. Mater. 2004 3 810 815 10.1038/nmat1223 15502837 

  61. 61. Shao M. Sasaki K. Marinkovic N. Zhang L. Adzic R. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co–Pd core–shell nanoparticle supports Electrochem. Commun. 2007 9 2848 2853 10.1016/j.elecom.2007.10.009 

  62. 62. Greeley J. Stephens I.E. Bondarenko A.S. Johansson T.P. Hansen H.A. Jaramillo T.F. Rossmeisl J. Chorkendorff I. Norskov J.K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts Nat. Chem. 2009 1 552 556 10.1038/nchem.367 21378936 

  63. 63. Strasser P. Koh S. Anniyev T. Greeley J. More K. Yu C. Liu Z. Kaya S. Nordlund D. Ogasawara H. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts Nat. Chem. 2010 2 454 460 10.1038/nchem.623 20489713 

  64. 64. Lee Y. Kleis J. Rossmeisl J. Morgan D. Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes Phys. Rev. B 2009 80 224101 10.1103/PhysRevB.80.224101 

  65. 65. Pople J.A. HeadGordon M. Fox D.J. Raghavachari K. Curtiss L.A. Gaussian-1 theory: A general procedure for prediction of molecular energies J. Chem. Phys. 1989 90 5622 5629 10.1063/1.456415 

  66. 66. Han B.C. Miranda C.R. Ceder G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study Phys. Rev. B 2008 77 075410 10.1103/PhysRevB.77.075410 

  67. 67. Sattiler M.L. Ross P.N. The surface structure of Pt crystallites supported on carbon black Ultramicroscopy 1986 20 21 28 10.1016/0304-3991(86)90163-4 

  68. 68. Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes J. Electrochem. Soc. 1990 137 845 848 10.1149/1.2086566 

  69. 69. Mukerjee S. McBreen J. Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: An in situ XAS investigation J. Electroanal. Chem. 1998 448 163 171 10.1016/S0022-0728(97)00018-1 

  70. 70. Ekuma E.E. Bagayoko D. Ab-initio electronic and structural properties of rutile titanium dioxide Jpn. J. Appl. Phys. 2011 50 101103 10.1143/JJAP.50.101103 

  71. 71. Labat F. Baranek P. Domain C. Minot C. Adamo C. Density functional theory analysis of the structural and electronic properties of TiO 2 rutile and anatase polytypes: Performances of different exchange-correlation functionals J. Chem. Phys. 2007 126 154703 10.1063/1.2717168 17461655 

  72. 72. Zhang J. Su N. Hu X. Zhu F. Yu Y. Yang H. Facile synthesis of Pt nanoparticles supported on anatase TiO 2 nanotubes with good photo-electrocatalysis performance for methanol RSC Adv. 2017 7 56194 56203 10.1039/C7RA11564D 

  73. 73. Huang K. Sasaki K. Adzic R.R. Xing Y. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO 2 nanocoating catalyst support J. Mater. Chem. 2012 22 16824 10.1039/c2jm32234j 

  74. 74. Mayrhofer K.J.J. Blizanac B.B. Arenz M. Stamenkovic V.R. Ross P.N. Markovic N.M. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis J. Phys. Chem. B 2005 109 14433 14440 10.1021/jp051735z 16852816 

  75. 75. Jang J.H. Kim J. Lee Y.H. Kim I.Y. Park M.H. Yang C.W. Hwang S.J. Kwon Y.U. One-pot synthesis of core–shell-like Pt3Co nanoparticle electrocatalyst with Pt-enriched surface for oxygen reduction reaction in fuel cells Energy Environ. Sci. 2011 4 4947 10.1039/c1ee01825f 

  76. 76. Shinagawa T. Garcia-Esparza A.T. Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion Sci. Rep. 2015 5 13801 10.1038/srep13801 26348156 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로