최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nanomaterials, v.11 no.4, 2021년, pp.829 -
Dogan, Didem C. (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea) , Choi, Jiye (didemcil@gmail.com (D.C.D.)) , Seo, Min Ho (jiye1120@kier.re.kr (J.C.)) , Lee, Eunjik (ejlee21@kier.re.kr (E.L.)) , Jung, Namgee (jimmyim@kier.re.kr (S.-D.Y.)) , Yim, Sung-Dae (thyang@kier.re.kr (T.-H.Y.)) , Yang, Tae-Hyun (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER), 152, Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea) , Park, Gu-Gon (didemcil@gmail.com (D.C.D.))
In this study, we address the catalytic performance of variously sized Pt nanoparticles (NPs) (from 1.7 to 2.9 nm) supported on magnéli phase titanium oxide (MPTO, Ti4O7) along with commercial solid type carbon (VXC-72R) for oxygen reduction reaction (ORR). Key idea is to utilize a robust and...
1. Rabis A. Rodriguez P. Schmidt T.J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges ACS Catal. 2012 2 864 890 10.1021/cs3000864
3. Yang Y. Song Y. Sun H. Xiang D. Jiang Q. Lu Z. He H. Huang H. Rh-decorated three-dimensional graphene aerogel networks as highly-efficient electrocatalysts for direct methanol fuel cells Front. Energy Res. 2020 8 8 10.3389/fenrg.2020.00060
4. Zheng H.B. An L. Zheng Y. Qu C. Fang Y. Liu Q. Dang D. Tuning the catalytic activity of Ir@Pt nanoparticles through controlling Ir core size on cathode performance for PEM fuel cell application Front. Chem. 2018 6 299 10.3389/fchem.2018.00299 30094230
5. Noel J.M. Yu Y. Mirkin M.V. Dissolution of Pt at moderately negative potentials during oxygen reduction in water and organic media Langmuir 2013 29 1346 1350 10.1021/la304694d 23323756
6. Brouzgou A. Seretis A. Song S. Shen P.K. Tsiakaras P. CO tolerance and durability study of PtMe(Me = Ir or Pd) electrocatalysts for H2-PEMFC application Int. J. Hydrogen Energy 2020 10.1016/j.ijhydene.2020.07.224
7. Tian Z.Q. Lim S.H. Poh C.K. Tang Z. Xia Z. Luo Z. Shen P.K. Chua D. Feng Y.P. Shen Z. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells Adv. Energy Mater. 2011 1 1205 1214 10.1002/aenm.201100371
8. Murata S. Imanishi M. Hasegawa S. Namba R. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells J. Power Sources 2014 253 104 113 10.1016/j.jpowsour.2013.11.073
9. Hwang S.M. Park J.H. Lim S. Jung D.H. Guim H. Yoon Y.G. Yim S.D. Kim T.Y. Designing an ultrathin silica layer for highly durable carbon nanofibers as the carbon support in polymer electrolyte fuel cells Nanoscale 2014 6 12111 12119 10.1039/C4NR04293J 25196022
10. Ghosh A. Basu S. Verma A. Graphene and functionalized graphene supported platinum catalyst for PEMFC Fuel Cells 2013 13 355 363 10.1002/fuce.201300039
11. Antolini E. Graphene as a new carbon support for low-temperature fuel cell catalysts Appl. Catal. B Environ. 2012 123–124 52 68 10.1016/j.apcatb.2012.04.022
12. Zhong X. Ye S. Tang J. Zhu Y. Wu D. Gu M. Pan H. Xu B. Engineering Pt and Fe dual-metal single atoms anchored on nitrogen-doped carbon with high activity and durability towards oxygen reduction reaction for zinc-air battery Appl. Catal. B Environ. 2021 286 119891 10.1016/j.apcatb.2021.119891
13. Krishnan P. Advani S. Prasad A.K. Magneli phase Ti n O2n—1 as corrosion-resistant PEM fuel cell catalyst support J. Solid State Chem. 2012 16 2515 2521 10.1007/s10008-012-1663-1
14. Yao C. Li F. Li X. Xia D. Fiber-like nanostructured Ti4O7 used as durable fuel cell catalyst support in oxygen reduction catalysis J. Mater. Chem. 2012 22 16560 10.1039/c2jm32866f
15. Kakinuma K. Chino Y. Senoo Y. Uchida M. Kamino T. Uchida H. Deki S. Watanabe M. Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2–δ support materials with aggregated structure by rotating disk electrode and fuel cell measurements Electrochim. Acta. 2013 110 316 324 10.1016/j.electacta.2013.06.127
16. Shao Y. Liu J. Wang Y. Lin Y. Novel catalyst support materials for PEMfuelcells: Current status and future prospects J. Mater. Chem. 2009 19 46 59 10.1039/B808370C
17. Yang D.H. Sui X.L. Zhao L. Huang G.S. Gu D.M. Wang Z.B. Pt supported on carbon-coating antimony Tin oxide as anode catalyst for direct methanol fuel cell Fuel Cells 2018 18 763 770 10.1002/fuce.201800039
18. Naik K.M. Higuchi E. Inoue H. Two-dimensional oxygen-deficient TiO 2 nanosheets-supported Pt nanoparticles as durable catalyst for oxygen reduction reaction in proton exchange membrane fuel cells J. Power Sources 2020 455 227972 10.1016/j.jpowsour.2020.227972
19. Alipour Moghadam Esfahani R. Ebralidze I.I. Specchia S. Easton E.B. A fuel cell catalyst support based on doped titanium suboxides with enhanced conductivity, durability and fuel cell performance J. Mater. Chem. A 2018 6 14805 14815 10.1039/C8TA02470G
20. Jeon Y. Ji Y. Cho Y.I. Lee C. Park D.H. Shul Y.G. Oxide-carbon nanofibrous composite support for a highly active and stable polymer electrolyte membrane fuel-cell catalyst ACS Nano 2018 12 6819 6829 10.1021/acsnano.8b02040 29966089
21. Sullivan M.T. Alipour Moghadam Esfahani R. Easton E.B. Conductive metal oxide-based fuel cell catalyst supports prepared by doping TiO 2 with Si understanding the role of Si content EXS Trans. 2020 97 659 670 10.1149/09707.0659ecst
22. Wang J. Yin G. Shao Y. Zhang S. Wang Z. Gao Y. Effect of carbon black support corrosion on the durability of Pt/C catalyst J. Power Sources 2007 171 331 339 10.1016/j.jpowsour.2007.06.084
23. Maass S. Finsterwalder F. Frank G. Hartmann R. Merten C. Carbon support oxidation in PEM fuel cell cathodes J. Power Sources 2008 176 444 451 10.1016/j.jpowsour.2007.08.053
24. Tang H. Qi Z. Ramani M. Elter J.F. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode J. Power Sources 2006 158 1306 1312 10.1016/j.jpowsour.2005.10.059
25. Hacker V. Baumgartner W. Wallnöfer E. Schaffer T. Besenhard J.O. Characterization of carbon nanofiber-based fuel cell electrodes EXS Trans. 2006 3 295 10.1149/1.2356148
26. Bartholomew R.F. Frankl D.R. Electrical properties of some titanium oxides Phys. Rev. B 1969 187 828 833 10.1103/PhysRev.187.828
27. Chen G. Bare S.R. Mallouk T.E. Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells J. Electrochem. Soc. 2002 149 A1092 10.1149/1.1491237
28. Ioroi T. Siroma Z. Fujiwara N. Yamazaki S. Yasuda K. Sub-stoichiometric titanium oxide-supported platinum electrocatalyst for polymer electrolyte fuel cells Electrochem. Commun. 2005 7 183 188 10.1016/j.elecom.2004.12.007
29. Ioroi T. Senoh H. Yamazaki S. Siroma Z. Fujiwara N. Yasuda K. Stability of corrosion-resistant Magnéli-phase Ti4O7-supported PEMFC catalysts at high potentials J. Electrochem. Soc. 2008 155 B321 10.1149/1.2833310
30. Dogan D.C. Hwang S.M. Jang E.H. Yim S.D. Sohn Y.J. Kim S.H. Yang T.H. Park G.G. Highly platinum-loaded Magneli phase titanium oxides as a high voltage tolerant electrocatalyst for polymer electrolyte fuel cells J. Nanosci. Nanotechnol. 2015 15 6988 6994 10.1166/jnn.2015.10549 26716272
31. Islam J. Kim S.K. Kim K.H. Lee E. Park G.G. Enhanced durability of Pt/C catalyst by coating carbon black with silica for oxygen reduction reaction Int. J. Hydrogen Energy 2021 46 1133 1143 10.1016/j.ijhydene.2020.09.194
32. Warschkow O. Wang Y. Subramanian A. Asta M. Marks L.D. Structure and local-equilibrium thermodynamics of the c(2x2) reconstruction of rutile TiO 2 (100) Phys. Rev. Lett. 2008 100 086102 10.1103/PhysRevLett.100.086102 18352638
33. Wang Y. Warschkow O. Marks L.D. Surface evolution of rutile TiO 2 (100) in an oxidizing environment Surf. Sci. 2007 601 63 67 10.1016/j.susc.2006.09.005
34. Yoshida K. Kawai T. Nambara T. Tanemura S. Saitoh K. Tanaka N. Direct observation of oxygen atoms in rutile titanium dioxide by spherical aberration corrected high-resolution transmission electron microscopy Nanotechnology 2006 17 3944 3950 10.1088/0957-4484/17/15/056
35. Kresse G. Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 1996 54 11169 11186 10.1103/PhysRevB.54.11169
36. Blochl P.E. Projector augmented-wave method Phys. Rev. B Condens. Matter 1994 50 17953 17979 10.1103/PhysRevB.50.17953 9976227
37. Kresse G. Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 1999 59 1758 1775 10.1103/PhysRevB.59.1758
38. Perdew J.P. Burke K. Ernzerhof M. Generalized gradient approximation made simple Phys. Rev. Lett. 1996 77 3865 3868 10.1103/PhysRevLett.77.3865 10062328
39. Blochl P.E. Jepsen O. Andersen O.K. Improved tetrahedron method for Brillouin-zone integrations Phys. Rev. B Condens. Matter 1994 49 16223 16233 10.1103/PhysRevB.49.16223 10010769
40. Wang Y.J. Wilkinson D.P. Zhang J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts Chem. Rev. 2011 111 7625 7651 10.1021/cr100060r 21919529
41. Feldberg S.W. Enke C.G. Bricker C.E. Formation and dissolution of platinum oxide film: Mechanism and kinetics J. Electrochem. Soc. 1963 110 826 834 10.1149/1.2425880
42. Seo M.H. Choi S.M. Lim E.J. Kwon I.H. Seo J.K. Noh S.H. Kim W.B. Han B. Toward new fuel cell support materials: A theoretical and experimental study of nitrogen-doped graphene ChemSusChem 2014 7 2609 2620 10.1002/cssc.201402258 25044873
43. Higgins D. Hoque M.A. Seo M.H. Wang R. Hassan F. Choi J.Y. Pritzker M. Yu A. Zhang J. Chen Z. Development and simulation of sulfur-doped graphene supported platinum with exemplary stability and activity towards oxygen reduction Adv. Funct. Mater. 2014 24 4325 4336 10.1002/adfm.201400161
44. Seo M.H. Park H.W. Lee D.U. Park M.G. Chen Z. Design of highly active perovskite oxides for oxygen evolution reaction by combining experimental and ab Initio studies ACS Catal. 2015 5 4337 4344 10.1021/acscatal.5b00114
45. Lundqvist B.I. Gunnarsson O. Hjelmberg H. Theoretical description of molecure-metal interaction and surface reactions Surf. Sci. 1979 89 196 225 10.1016/0039-6028(79)90608-3
46. Hammer B. Norskov J.K. Why gold is the noblest of all the metals Lett. Nat. 1995 376 238 240 10.1038/376238a0
47. Hammer B. Norskov J.K. Theoretical Surface Science and Catalysis—Calculations and Concepts Adv. Catal. 2000 45 71 129
48. Calle-Vallejo F. Díaz-Morales O.A. Kolb M.J. Koper M.T.M. Why Is bulk thermochemistry a good descriptor for the electrocatalytic activity of rransition metal oxides? ACS Catal. 2015 5 869 873 10.1021/cs5016657
49. Calle-Vallejo F. Martinez J.I. Garcia-Lastra J.M. Mogensen M. Rossmeisl J. Trends in stability of perovskite oxides Angew. Chem. Int. Ed. 2010 49 7699 7701 10.1002/anie.201002301
50. Calle-Vallejo F. Inoglu N.G. Su H.Y. Martínez J.I. Man I.C. Koper M.T.M. Kitchin J.R. Rossmeisl J. Number of outer electrons as descriptor for adsorption processes on transition metals and their oxides Chem. Sci. 2013 4 1245 10.1039/c2sc21601a
51. Bader R.F. Atoms in Molecules Wiley online Library Hoboken, NJ, USA 1990
52. Seo J.K. Khetan A. Seo M.H. Kim H. Han B. First-principles thermodynamic study of the electrochemical stability of Pt nanoparticles in fuel cell applications J. Power Sources 2013 238 137 143 10.1016/j.jpowsour.2013.03.077
53. Jinnouchi R. Toyoda E. Hatanaka T. Morimoto Y. First principles calculations on site-dependent dissolution potentials of supported and unsupported Pt particles J. Phys. Chem. C 2010 114 17557 17568 10.1021/jp106593d
54. Noh S.H. Seo M.H. Seo J.K. Fischer P. Han B. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts Nanoscale 2013 5 8625 8633 10.1039/c3nr02611f 23897215
55. Tang L. Han B. Persson K. Friesen C. He T. Sieradzki K. Ceder G. Electrochemical stability of nanometer-scale Pt particles in acidic environments J. Am. Chem. Soc. 2009 132 596 600 10.1021/ja9071496
56. Shao M. Liu P. Zhang J. Adzic R. Origin of enhanced activity in palladium alloy electrocatalysts for oxygen reduction reaction J. Phys. Chem. B 2007 111 6772 6775 10.1021/jp0689971 17441757
57. Hammer B. Norskov J.K. Electronic factors determining the reactivity of metal surfaces Surf. Sci. 1995 343 211 220 10.1016/0039-6028(96)80007-0
58. Demirci U.B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells J. Power Sources 2007 173 11 18 10.1016/j.jpowsour.2007.04.069
59. Shao M. Liu P. Zhang J. Sasaki K. Vukmirovic M.B. Adzic R.R. Palladium monolayer and palladium alloy electrocatalysts for oxygen reduction Langmuir 2006 22 10409 10415 10.1021/la0610553 17129009
60. Greeley J. Mavrikakis M. Alloy catalysts designed from first principles Nat. Mater. 2004 3 810 815 10.1038/nmat1223 15502837
61. Shao M. Sasaki K. Marinkovic N. Zhang L. Adzic R. Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co–Pd core–shell nanoparticle supports Electrochem. Commun. 2007 9 2848 2853 10.1016/j.elecom.2007.10.009
62. Greeley J. Stephens I.E. Bondarenko A.S. Johansson T.P. Hansen H.A. Jaramillo T.F. Rossmeisl J. Chorkendorff I. Norskov J.K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts Nat. Chem. 2009 1 552 556 10.1038/nchem.367 21378936
63. Strasser P. Koh S. Anniyev T. Greeley J. More K. Yu C. Liu Z. Kaya S. Nordlund D. Ogasawara H. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts Nat. Chem. 2010 2 454 460 10.1038/nchem.623 20489713
64. Lee Y. Kleis J. Rossmeisl J. Morgan D. Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes Phys. Rev. B 2009 80 224101 10.1103/PhysRevB.80.224101
65. Pople J.A. HeadGordon M. Fox D.J. Raghavachari K. Curtiss L.A. Gaussian-1 theory: A general procedure for prediction of molecular energies J. Chem. Phys. 1989 90 5622 5629 10.1063/1.456415
66. Han B.C. Miranda C.R. Ceder G. Effect of particle size and surface structure on adsorption of O and OH on platinum nanoparticles: A first-principles study Phys. Rev. B 2008 77 075410 10.1103/PhysRevB.77.075410
67. Sattiler M.L. Ross P.N. The surface structure of Pt crystallites supported on carbon black Ultramicroscopy 1986 20 21 28 10.1016/0304-3991(86)90163-4
68. Kinoshita K. Particle size effects for oxygen reduction on highly dispersed platinum in acid electrolytes J. Electrochem. Soc. 1990 137 845 848 10.1149/1.2086566
69. Mukerjee S. McBreen J. Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: An in situ XAS investigation J. Electroanal. Chem. 1998 448 163 171 10.1016/S0022-0728(97)00018-1
70. Ekuma E.E. Bagayoko D. Ab-initio electronic and structural properties of rutile titanium dioxide Jpn. J. Appl. Phys. 2011 50 101103 10.1143/JJAP.50.101103
71. Labat F. Baranek P. Domain C. Minot C. Adamo C. Density functional theory analysis of the structural and electronic properties of TiO 2 rutile and anatase polytypes: Performances of different exchange-correlation functionals J. Chem. Phys. 2007 126 154703 10.1063/1.2717168 17461655
72. Zhang J. Su N. Hu X. Zhu F. Yu Y. Yang H. Facile synthesis of Pt nanoparticles supported on anatase TiO 2 nanotubes with good photo-electrocatalysis performance for methanol RSC Adv. 2017 7 56194 56203 10.1039/C7RA11564D
73. Huang K. Sasaki K. Adzic R.R. Xing Y. Increasing Pt oxygen reduction reaction activity and durability with a carbon-doped TiO 2 nanocoating catalyst support J. Mater. Chem. 2012 22 16824 10.1039/c2jm32234j
74. Mayrhofer K.J.J. Blizanac B.B. Arenz M. Stamenkovic V.R. Ross P.N. Markovic N.M. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis J. Phys. Chem. B 2005 109 14433 14440 10.1021/jp051735z 16852816
75. Jang J.H. Kim J. Lee Y.H. Kim I.Y. Park M.H. Yang C.W. Hwang S.J. Kwon Y.U. One-pot synthesis of core–shell-like Pt3Co nanoparticle electrocatalyst with Pt-enriched surface for oxygen reduction reaction in fuel cells Energy Environ. Sci. 2011 4 4947 10.1039/c1ee01825f
76. Shinagawa T. Garcia-Esparza A.T. Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion Sci. Rep. 2015 5 13801 10.1038/srep13801 26348156
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.