$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Network Analysis to Identify the Risk of Epidemic Spreading 원문보기

Applied sciences, v.11 no.7, 2021년, pp.2997 -   

Kim, Kiseong (Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea) ,  Yoo, Sunyong (Department of ICT Convergence System Engineering, Chonnam National University, Gwangju 61005, Korea) ,  Lee, Sangyeon (Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea) ,  Lee, Doheon (Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea) ,  Lee, Kwang-Hyung (Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Korea)

Abstract AI-Helper 아이콘AI-Helper

Several epidemics, such as the Black Death and the Spanish flu, have threatened human life throughout history; however, it is unclear if humans will remain safe from the sudden and fast spread of epidemic diseases. Moreover, the transmission characteristics of epidemics remain undiscovered. In this ...

참고문헌 (55)

  1. Baum The far future argument for confronting catastrophic threats to humanity: Practical significance and alternatives Futures 2015 10.1016/j.futures.2015.03.001 72 86 

  2. Flahault Strategies for containing a global influenza pandemic Vaccine 2006 10.1016/j.vaccine.2006.05.079 24 6751 

  3. Collins General practice: Professional preparation for a pandemic Med. J. Aust. 2006 10.5694/j.1326-5377.2006.tb00711.x 185 S66 

  4. Walker A pest in the land: New World epidemics in a global perspective-Alchon, Suzanne Austin J. R. Anthropol. Inst. 2006 10.1111/j.1467-9655.2006.00289_1.x 12 219 

  5. Benedictow, O.J. (2004). The Black Death, 1346-1353: The Complete History, Boydell & Brewer. 

  6. Johnson Updating the accounts: Global mortality of the 1918-1920 “Spanish” influenza pandemic Bull. Hist. Med. 2002 10.1353/bhm.2002.0022 76 105 

  7. 10.1080/08998280.2005.11928028 Riedel, S. (2005). Edward Jenner and the history of smallpox and vaccination. Baylor University Medical Center Proceedings, Taylor & Francis. 

  8. Ksiazek A novel coronavirus associated with severe acute respiratory syndrome New Engl. J. Med. 2003 10.1056/NEJMoa030781 348 1953 

  9. Feldmann Ebola haemorrhagic fever Lancet 2011 10.1016/S0140-6736(10)60667-8 377 849 

  10. Tatem Global transport networks and infectious disease spread Adv. Parasitol. 2006 10.1016/S0065-308X(05)62009-X 62 293 

  11. 10.1057/9780230524248_2 Morse, S.S. (2001). Factors in the emergence of infectious diseases. Plagues and Politics, Springer. 

  12. Balcan Multiscale mobility networks and the spatial spreading of infectious diseases Proc. Natl. Acad. Sci. USA 2009 10.1073/pnas.0906910106 106 21484 

  13. Eubank Network based models of infectious disease spread Jpn. J. Infect. Dis. 2005 10.7883/yoken.JJID.2005.S9 58 S9 

  14. Alvarez Sispread: A software to simulate infectious diseases spreading on contact networks Methods Inf. Med. 2007 10.1055/s-0038-1627827 46 19 

  15. Kitsak Identification of influential spreaders in complex networks Nat. Phys. 2010 10.1038/nphys1746 6 888 

  16. 10.1007/978-3-662-07544-9 Hethcote, H.W., and Yorke, J.A. (1984). Gonorrhea Transmission Dynamics and Control, Springer. 

  17. Parshani Epidemic threshold for the susceptible-infectious-susceptible model on random networks Phys. Rev. Lett. 2010 10.1103/PhysRevLett.104.258701 104 258701 

  18. Wang Global analysis of an SIS model with an infective vector on complex networks Nonlinear Anal. Real World Appl. 2012 10.1016/j.nonrwa.2011.07.033 13 543 

  19. Black Stochastic fluctuations in the susceptible-infective-recovered model with distributed infectious periods Phys. Rev. E 2009 10.1103/PhysRevE.80.021922 80 021922 

  20. 10.1093/oso/9780198545996.001.0001 Anderson, R.M., and May, R.M. (1992). Infectious Diseases of Humans: Dynamics and Control, Oxford University Press. 

  21. Kermack A contribution to the mathematical theory of epidemics Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1927 115 700 

  22. Dodds Universal behavior in a generalized model of contagion Phys. Rev. Lett. 2004 10.1103/PhysRevLett.92.218701 92 218701 

  23. 10.1371/journal.pmed.0020320 Wearing, H.J., Rohani, P., and Keeling, M.J. (2005). Appropriate models for the management of infectious diseases. PLoS Med., 2. 

  24. Sartwell The Distribution of Incubation Periods of Infectious Diseases Am. J. Hyg. 1950 51 310 

  25. 10.1016/S0140-6736(52)91357-3 Simpson, R.H. (1952). Infectiousness of communicable diseases in the household (measles, chickenpox, and mumps). Lancet, 549-554. 

  26. Bailey, N.T. (1975). The Mathematical Theory of Infectious Diseases and Its Applications, Charles Griffin & Company Ltd. 

  27. Albert Emergence of scaling in random networks Science 1999 10.1126/science.286.5439.509 286 509 

  28. Albert Mean-field theory for scale-free random networks Phys. A Stat. Mech. Its Appl. 1999 10.1016/S0378-4371(99)00291-5 272 173 

  29. Bonabeau Scale-free networks Sci. Am. 2003 10.1038/scientificamerican0503-60 288 60 

  30. Albert Statistical mechanics of complex networks Rev. Mod. Phys. 2002 10.1103/RevModPhys.74.47 74 47 

  31. Diekmann, O., and Heesterbeek, J.A.P. (2000). Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation, John Wiley & Sons. 

  32. Keeling The effects of local spatial structure on epidemiological invasions Proc. R. Soc. Lond. Ser. B Biol. Sci. 1999 10.1098/rspb.1999.0716 266 859 

  33. Heesterbeek A brief history of R 0 and a recipe for its calculation Acta Biotheoretica 2002 10.1023/A:1016599411804 50 189 

  34. Hethcote The mathematics of infectious diseases Siam Rev. 2000 10.1137/S0036144500371907 42 599 

  35. McCracken The monte carlo method Sci. Am. 1955 10.1038/scientificamerican0555-90 192 90 

  36. 10.1002/9781118631980 Rubinstein, R.Y., and Kroese, D.P. (2016). Simulation and the Monte Carlo Method, John Wiley & Sons. 

  37. 10.1093/acref/9780199976720.001.0001 Porta, M. (2014). A Dictionary of Epidemiology, Oxford University Press. 

  38. Li Finding the real case-fatality rate of H5N1 avian influenza J. Epidemiol. Community Health 2008 10.1136/jech.2007.064030 62 555 

  39. Last, J.M., Harris, S.S., Thuriaux, M.C., and Spasoff, R.A. (2001). A Dictionary of Epidemiology, International Epidemiological Association, Inc. 

  40. Mikler Modeling infectious diseases using global stochastic cellular automata J. Biol. Syst. 2005 10.1142/S0218339005001604 13 421 

  41. Eggo Respiratory virus transmission dynamics determine timing of asthma exacerbation peaks: Evidence from a population-level model Proc. Natl. Acad. Sci. USA 2016 10.1073/pnas.1518677113 113 2194 

  42. Tien Herald waves of cholera in nineteenth century London J. R. Soc. Interface 2011 10.1098/rsif.2010.0494 8 756 

  43. Pourabbas A method to estimate the incidence of communicable diseases under seasonal fluctuations with application to cholera Appl. Math. Comput. 2001 10.1016/S0096-3003(99)00212-X 118 161 

  44. 10.1007/978-90-481-2313-1_7 Bettencourt, L.M. (2009). An ensemble trajectory method for real-time modeling and prediction of unfolding epidemics: Analysis of the 2005 Marburg Fever outbreak in Angola. Mathematical and Statistical Estimation Approaches in Epidemiology, Springer. 

  45. 10.1371/journal.pone.0050948 Ajelli, M., and Merler, S. (2012). Transmission potential and design of adequate control measures for Marburg hemorrhagic fever. PLoS ONE, 7. 

  46. Camacho Potential for large outbreaks of Ebola virus disease Epidemics 2014 10.1016/j.epidem.2014.09.003 9 70 

  47. Chowell The basic reproductive number of Ebola and the effects of public health measures: The cases of Congo and Uganda J. Theor. Biol. 2004 10.1016/j.jtbi.2004.03.006 229 119 

  48. Lekone Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study Biometrics 2006 10.1111/j.1541-0420.2006.00609.x 62 1170 

  49. 10.1186/s12916-014-0196-0 Chowell, G., and Nishiura, H. (2014). Transmission dynamics and control of Ebola virus disease (EVD): A review. BMC Med., 12. 

  50. Xu SARS: Epidemiology Respirology 2003 8 S9 

  51. 10.1186/s12889-018-5484-8 Park, J.-E., Jung, S., and Kim, A. (2018). MERS transmission and risk factors: A systematic review. BMC Public Health, 18. 

  52. 10.3934/mbe.2011.8.733 Liao, S., and Wang, J. (2011). Stability analysis and application of a mathematical cholera model. Math. Biosci. Eng., 8. 

  53. Chen Application of SIR model in forecasting and analyzing for SARS Beijing Da Xue Xue Bao Yi Xue Ban J. Peking Univ. Health Sci. 2003 35 75 

  54. Berge A simple mathematical model for Ebola in Africa J. Biol. Dyn. 2017 10.1080/17513758.2016.1229817 11 42 

  55. Alshakhoury, N.S. (2017). Mathematical Modeling and Control of MERS-COV Epidemics. [Ph.D. Thesis, College of Arts and Sciences]. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로