$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Estimation of Glucosinolates and Anthocyanins in Kale Leaves Grown in a Plant Factory Using Spectral Reflectance 원문보기

Horticulturae : open access journal, v.7 no.3, 2021년, pp.56 -   

Chowdhury, Milon (Department of Agricultural Machinery Engineering, Graduate school, Chungnam National University, Daejeon 34134, Korea) ,  Ngo, Viet-Duc (Division of Computational Mechatronics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam) ,  Islam, Md Nafiul (Department of Agricultural Machinery Engineering, Graduate school, Chungnam National University, Daejeon 34134, Korea) ,  Ali, Mohammod (Department of Agricultural Machinery Engineering, Graduate school, Chungnam National University, Daejeon 34134, Korea) ,  Islam, Sumaiya (Department of Smart Agricultural Systems, Graduate School, Chungnam National University, Daejeon 34134, Korea) ,  Rasool, Kamal (Department of Agricultural Machinery Engineering, Graduate school, Chungnam National University, Daejeon 34134, Korea) ,  Park, Sang-Un (Department of Crop Science, Graduate school, Chungnam National University, Daejeon 34134, Korea) ,  Chung, Sun-Ok (Department of Agricultural Machinery Engineering, Graduate school, Chungnam National University, Daejeon 34134, Korea)

Abstract AI-Helper 아이콘AI-Helper

The spectral reflectance technique for the quantification of the functional components was applied in different studies for different crops, but related research on kale leaves is limited. This study was conducted to estimate the glucosinolate and anthocyanin components of kale leaves cultivated in ...

참고문헌 (63)

  1. Wu Challenges of developing a valid dietary glucosin-olate database J. Food Compos. Anal. 2017 10.1016/j.jfca.2017.07.014 64 78 

  2. Esteve Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome Front. Nutr. 2020 10.3389/fnut.2020.00111 7 111 

  3. Block Fruit, vegetables, and cancer prevention: A review of the epidemiological evidence Nutr. Cancer 1992 10.1080/01635589209514201 18 1 

  4. Kassie Chemoprevention of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced colonic and hepatic preneoplastic lesions in the F344 rat by cruciferous vegetables administered simultaneously with the carcinogen Carcinogenesis 2003 10.1093/carcin/24.2.255 24 255 

  5. Sun Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties Food Chem. 2011 10.1016/j.foodchem.2010.07.031 124 941 

  6. Vale Evaluating the impact of sprouting conditions on the glucosinolate content of Brassica oleracea sprouts Phytochemistry 2015 10.1016/j.phytochem.2015.02.004 115 252 

  7. Hahn Diversity of Kale (Brassica oleraceavar.sabellica): Glucosinolate Content and Phylogenetic Relationships J. Agric. Food Chem. 2016 10.1021/acs.jafc.6b01000 64 3215 

  8. Yu Analysis of leafy vegetable nitrate using a modified spec-trometric method Int. J. Anal. Chem. 2018 10.1155/2018/6285867 2018 1 

  9. Ngo Estimation of functional components of Chinese cabbage leaves grown in a plant factory using diffuse reflectance spectroscopy J. Sci. Food Agric. 2019 10.1002/jsfa.9237 99 711 

  10. Dechant Estimation of photosynthesis traits from leaf reflectance spectra: Correlation to nitrogen content as the dominant mechanism Remote Sens. Environ. 2017 10.1016/j.rse.2017.05.019 196 279 

  11. Kataria Alleviation of Adverse Effects of Ambient UV Stress on Growth and Some Potential Physiological Attributes in Soybean (Glycine max) by Seed Pre-treatment with Static Magnetic Field J. Plant. Growth Regul. 2017 10.1007/s00344-016-9657-3 36 550 

  12. Neto Classification of sugarcane varieties using visible/near infrared spectral reflectance of stalks and multivariate methods J. Agric. Sci. 2018 10.1017/S0021859618000539 156 537 

  13. Scotford Applications of Spectral Reflectance Techniques in Northern European Cereal Production: A Review Biosyst. Eng. 2005 10.1016/j.biosystemseng.2004.11.010 90 235 

  14. Konstantinos, G. (2017). Using Near-Infrared Spectroscopy in Agricultural Systems. Developments in Near-Infrared Spectroscopy, Intech. 

  15. Norris Predicting Forage Quality by Infrared Replectance Spectroscopy J. Anim. Sci. 1976 10.2527/jas1976.434889x 43 889 

  16. Mawlong A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake Int. J. Food Prop. 2017 10.1080/10942912.2017.1286353 20 3274 

  17. Bowie Factors Affecting the Performance of Bench-Top Raman Spectrometers. Part II: Effect of Sample Appl. Spectrosc. 2000 10.1366/0003702001950175 54 200A 

  18. 10.1029/2006GL026457 Gitelson, A.A., Keydan, G.P., and Merzlyak, M.N. (2006). Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett., 33. 

  19. Xue Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance ISPRS J. Photogramm. Remote Sens. 2009 10.1016/j.isprsjprs.2008.06.002 64 97 

  20. Gitelson Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy Photochem. Photobiol. 2007 10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2 75 272 

  21. Chen Application of near-infrared reflectance spectroscopy to evaluate the lutein and β-carotene in Chinese kale J. Food Compos. Anal. 2009 10.1016/j.jfca.2008.10.007 22 148 

  22. Chen Assessment of Glucosinolates in Chinese Kale by Near-Infrared Spectroscopy Int. J. Food Prop. 2014 10.1080/10942912.2012.678535 17 1668 

  23. Kim Identification and quantification of glucosinolates in Korean leaf mustard germplasm (Brassica juncea var. integrifolia) by liquid chromatography-electrospray ionization/tandem mass spectrometry Eur. Food Res. Technol. 2016 10.1007/s00217-016-2648-6 242 1479 

  24. Sahamishirazi Development of a near-infrared spectroscopy method (NIRS) for fast analysis of total, indolic, aliphatic and individual glucosinolates in new bred open pollinating genotypes of broccoli (Brassica oleracea convar. botrytis var. italica) Food Chem. 2017 10.1016/j.foodchem.2017.04.025 232 272 

  25. Agati Nondestructive Optical Sensing of Flavonols and Chlorophyll in White Head Cabbage (Brassica oleraceaL. var.capitatasubvar.alba) Grown under Different Nitrogen Regimens J. Agric. Food Chem. 2016 10.1021/acs.jafc.5b04962 64 85 

  26. 10.3390/plants9080960 Lin, K.-H., Shih, F.-C., Huang, M.-Y., and Weng, J.-H. (2020). Physiological Characteristics of Photosynthesis in Yellow-Green, Green and Dark-Green Chinese Kale (Brassica oleracea L. var. alboglabra Musil.) under Varying Light Intensities. Plants, 9. 

  27. Chung, S.O., Chowdhury, M., Ngo, V.D., Jang, B.E., Han, M.W., and Ko, H.J. (2021, January 25). Comparing Models and Wavelength Bands for Es-Timation of Functional Components of Kale and Chinese Cabbage. Available online: https://www.researchgate.net/profile/Milon_Chowdhury2/publication/343704587_Comparing_models_and_wavelength_bands_for_estimation_of_functional_components_of_Kale_and_Chinese_cabbage/links/5f3b24c5299bf13404cd4863/Comparing-models-and-wavelength-bands-for-estimation-of-functional-components-of-Kale-and-Chinese-cabbage.pdf. 

  28. Noisopa Effects of bio-extracts on the growth of chinese kale Agric. Nat. Resour. 2010 44 808 

  29. Filho Agronomic viability of New Zealand spinach and kale intercropping An. Acad. Bras. Ciências 2017 10.1590/0001-3765201720160906 89 2975 

  30. Kim Comparison of plant growth and glucosinolates of Chinese cabbage and kale crops under three cul-tivation conditions J. Biosyst. Eng. 2018 43 30 

  31. 10.1007/978-981-13-1065-2 Kozai, T. (2018). Smart Plant Factory: The Next Generation Indoor Vertical Farms, Springer. 

  32. 10.17660/ActaHortic.2020.1296.126 Chowdhury, M., Jang, B., Kabir, M., Kim, Y., Na, K., Park, S., and Chung, S. (2020). Factors affecting the accuracy and precision of ion-selective electrodes for hydroponic nutrient supply systems. Acta Hortic., 997-1004. 

  33. Kozai, T., Niu, G., and Takagaki, M. (2015). Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, Academic Press. 

  34. Yi Identification and Expression Analysis of Glucosinolate Biosynthetic Genes and Estimation of Glucosinolate Contents in Edible Organs of Brassica oleracea Subspecies Molecules 2015 10.3390/molecules200713089 20 13089 

  35. Yoon Harvest strategies to maximize the annual production of bioactive compounds, glucosinolates, and total antioxidant activities of kale in plant factories Hortic. Environ. Biotechnol. 2019 10.1007/s13580-019-00174-0 60 883 

  36. Carter The Impact of Biochar Application on Soil Properties and Plant Growth of Pot Grown Lettuce (Lactuca sativa) and Cabbage (Brassica chinensis) Agronomy 2013 10.3390/agronomy3020404 3 404 

  37. Ngo Location of Sampling Points in Optical Reflectance Measurements of Chinese Cabbage and Kale Leaves J. Biosyst. Eng. 2015 10.5307/JBE.2015.40.2.115 40 115 

  38. Lefsrud Changes in kale (Brassica oleracea L. var. acephala) carotenoid and chlorophyll pigment concentrations during leaf ontogeny Sci. Hortic. 2007 10.1016/j.scienta.2006.12.026 112 136 

  39. Chung The potential of remote monitoring and control of protected crop production environment using mobile phone under 3G and Wi-Fi communication conditions Eng. Agric. Environ. Food 2015 10.1016/j.eaef.2015.04.007 8 251 

  40. Chung Number of sampling leaves for reflectance measurement of Chinese cabbage and kale Korean J. Agric. Sci. 2014 10.7744/cnujas.2014.41.3.169 41 169 

  41. Kim Glucosinolate profiles in the seeds, leaves and roots of rocket salad (Eruca sativaMill.) and anti-oxidative activities of intact plant powder and purified 4-methoxyglucobrassicin Soil Sci. Plant. Nutr. 2006 10.1111/j.1747-0765.2006.00049.x 52 394 

  42. Park Differential Expression of Anthocyanin Biosynthetic Genes and Anthocyanin Accumulation in Tartary Buckwheat Cultivars ‘Hokkai T8’ and ‘Hokkai T10’ J. Agric. Food Chem. 2011 10.1021/jf200020b 59 2356 

  43. Park Metabolic Profiling of Glucosinolates, Anthocyanins, Carotenoids, and Other Secondary Metabolites in Kohlrabi (Brassica oleraceavar.gongylodes) J. Agric. Food Chem. 2012 10.1021/jf301667j 60 8111 

  44. Jeong Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings Food Chem. 2018 10.1016/j.foodchem.2017.08.067 241 7 

  45. 10.1039/9781788012614 Brooks, M.S.L., and Celli, G.B. (2019). Anthocyanins From Natural Sources: Exploiting Targeted Delivery for Improved Health, Royal Society of Chemistry. 

  46. Luthria A Comparison of Analytical and Data Preprocessing Methods for Spectral Fingerprinting Appl. Spectrosc. 2011 10.1366/10-06109 65 250 

  47. Osborne Improving your data transformations: Applying the Box-Cox transformation Pract. Assess. Res. Eval. 2010 15 1 

  48. 10.3390/rs9101081 Kawamura, K., Tsujimoto, Y., Rabenarivo, M., Asai, H., Andriamananjara, A., and Rakotoson, T. (2017). Vis-NIR Spectroscopy and PLS Regression with Waveband Selection for Estimating the Total C and N of Paddy Soils in Madagascar. Remote Sens., 9. 

  49. Mahesh Comparison of Partial Least Squares Regression (PLSR) and Principal Components Regression (PCR) Methods for Protein and Hardness Predictions using the Near-Infrared (NIR) Hyperspectral Images of Bulk Samples of Canadian Wheat Food Bioprocess. Technol. 2015 10.1007/s11947-014-1381-z 8 31 

  50. Yaroshchyk Comparison of principal components regression, partial least squares regression, multi-block partial least squares regression, and serial partial least squares regression algorithms for the analysis of Fe in iron ore using LIBS J. Anal. At. Spectrom. 2012 10.1039/C1JA10164A 27 92 

  51. Ghani Stepwise Multiple Regression Method to Forecast Fish Landing Procedia-Soc. Behav. Sci. 2010 10.1016/j.sbspro.2010.12.076 8 549 

  52. Zhan Influence of plant root morphology and tissue composition on phenanthrene uptake: Stepwise multiple linear regression analysis Environ. Pollut. 2013 10.1016/j.envpol.2013.04.033 179 294 

  53. Neto Non-destructive prediction of pigment content in lettuce based on visible-NIR spectroscopy J. Sci. Food Agric. 2016 10.1002/jsfa.8002 97 2015 

  54. Kira Non-destructive estimation of foliar chlorophyll and carotenoid contents: Focus on informative spectral bands Int. J. Appl. Earth Obs. Geoinf. 2015 38 251 

  55. Velasco Factors Affecting the Glucosinolate Content of Kale (Brassica oleraceaacephala Group) J. Agric. Food Chem. 2007 10.1021/jf0624897 55 955 

  56. 10.3390/molecules22050851 Toledo-Martín, E.M., Font, R., Obregón-Cano, S., De Haro-Bailón, A., Villatoro-Pulido, M., and Del Río-Celestino, M. (2017). Rapid and Cost-Effective Quantification of Glucosinolates and Total Phenolic Content in Rocket Leaves by Visible/Near-Infrared Spectroscopy. Molecules, 22. 

  57. Steindal Effects of photoperiod, growth temperature and cold acclimatisation on glucosinolates, sugars and fatty acids in kale Food Chem. 2015 10.1016/j.foodchem.2014.10.129 174 44 

  58. Dou Morphological and Physiological Responses in Basil and Brassica Species to Different Proportions of Red, Blue, and Green Wavelengths in Indoor Vertical Farming J. Am. Soc. Hortic. Sci. 2020 10.21273/JASHS04927-20 145 267 

  59. Interacting effects of high light and elevated CO2 on the nutraceutical quality of two differently pigmented Lactuca sativa cultivars (Blonde of Paris Batavia and Oak Leaf) Sci. Hortic. 2015 10.1016/j.scienta.2015.04.030 191 38 

  60. Marin Weather Variability Influences Color and Phenolic Content of Pigmented Baby Leaf Lettuces throughout the Season J. Agric. Food Chem. 2015 10.1021/acs.jafc.5b00120 63 1673 

  61. Alrifai Current Review of the Modulatory Effects of LED Lights on Photosynthesis of Secondary Metabolites and Future Perspectives of Microgreen Vegetables J. Agric. Food Chem. 2019 10.1021/acs.jafc.9b00819 67 6075 

  62. Nosenko, T., Hutsalo, I., Nosenko, V., Levchuk, I., and Litvynchuk, S. (2013). Analysis of near infrared reflectance spectrum of rape seed with different content of erucic acid. Ukr. J. Food Sci., 94-99. 

  63. Challinor Crop yield response to climate change varies with cropping intensity Glob. Chang. Biol. 2015 10.1111/gcb.12808 21 1679 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로