$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Preferential Protection of Low Coordinated Sites in Pt Nanoparticles for Enhancing Durability of Pt/C Catalyst 원문보기

Energies, v.14 no.5, 2021년, pp.1419 -   

Lee, Dong Wook (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Yuk, Seongmin (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Choi, Sungyu (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Lee, Dong-Hyun (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Doo, Gisu (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Hyun, Jonghyun (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Kwen, Jiyun (Department of Chemical & Bio) ,  Kim, Jun Young ,  Kim, Hee-Tak

Abstract AI-Helper 아이콘AI-Helper

Protecting low coordinated sites (LCS) of Pt nanoparticles, which are vulnerable to dissolution, may be an ideal solution for enhancing the durability of polymer electrolyte fuel cells (PEMFCs). However, the selective protection of LCSs without deactivating the other sites presents a key challenge. ...

참고문헌 (38)

  1. Steele Materials for fuel-cell technologies Nature 2001 10.1038/35104620 414 345 

  2. Winter What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004 10.1021/cr020730k 104 4245 

  3. Qiu Evidence of a Unique Electron Donor−Acceptor Property for Platinum Nanoparticles as Studied by XPS Langmuir 2006 10.1021/la053071q 22 4480 

  4. Yu Degradation Mechanisms of Platinum Nanoparticle Catalysts in Proton Exchange Membrane Fuel Cells: The Role of Particle Size Chem. Mater. 2014 10.1021/cm501867c 26 5540 

  5. Meier Design criteria for stable Pt/C fuel cell catalysts Beilstein J. Nanotechnol. 2014 10.3762/bjnano.5.5 5 44 

  6. Sharma Quantification on Degradation Mechanisms of Polymer Electrolyte Membrane Fuel Cell Catalyst Layers during an Accelerated Stress Test ACS Catal. 2018 10.1021/acscatal.8b00002 8 3424 

  7. Tang Electrochemical Stability of Nanometer-Scale Pt Particles in Acidic Environments J. Am. Chem. Soc. 2010 10.1021/ja9071496 132 596 

  8. Cherevko Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum Nano Energy 2016 10.1016/j.nanoen.2016.03.005 29 275 

  9. Tymoczko Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors Science 2015 10.1126/science.aab3501 350 185 

  10. Lopes Relationships between Atomic Level Surface Structure and Stability/Activity of Platinum Surface Atoms in Aqueous Environments ACS Catal. 2016 10.1021/acscatal.5b02920 6 2536 

  11. Subramanian Pt-Oxide Coverage-Dependent Oxygen Reduction Reaction (ORR) Kinetics J. Electrochem. Soc. 2012 10.1149/2.088205jes 159 B531 

  12. Chung Functional link between surface low-coordination sites and the electrochemical durability of Pt nanoparticles J. Power Sources 2016 10.1016/j.jpowsour.2016.10.007 334 52 

  13. Sandbeck Dissolution of Platinum Single Crystals in Acidic Medium ChemPhysChem 2019 10.1002/cphc.201900866 20 2997 

  14. Stephens Understanding the electrocatalysis of oxygen reduction on platinum and its alloys Energy Environ. Sci. 2012 10.1039/c2ee03590a 5 6744 

  15. Takahashi Oxygen reduction reaction activity and structural stability of Pt-Au nanoparticles prepared by arc-plasma deposition Phys. Chem. Chem. Phys. 2015 10.1039/C5CP02048D 17 18638 

  16. Cai Selective Passivation of Pt Nanoparticles with Enhanced Sintering Resistance and Activity toward CO Oxidation via Atomic Layer Deposition ACS Appl. Nano Mater. 2018 10.1021/acsanm.7b00026 1 522 

  17. Jiang Carbon riveted Pt/C catalyst with high stability prepared by in situ carbonized glucose Chem. Commun. 2010 10.1039/c0cc02364g 46 6998 

  18. Lee Novel synthesis of highly durable and active Pt catalyst encapsulated in nitrogen containing carbon for polymer electrolyte membrane fuel cell J. Power Sources 2017 10.1016/j.jpowsour.2017.07.040 362 228 

  19. Chung Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction J. Am. Chem. Soc. 2015 10.1021/jacs.5b09653 137 15478 

  20. Chung Atomic layer deposition of ultrathin layered TiO2 on Pt/C cathode catalyst for extended durability in polymer electrolyte fuel cells J. Energy Chem. 2016 10.1016/j.jechem.2016.01.010 25 258 

  21. Cheng Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area-Selective Atomic Layer Deposition for the Oxygen Reduction Reaction Adv. Mater. 2015 10.1002/adma.201404314 27 277 

  22. Takenaka Improvement in the Durability of Pt Electrocatalysts by Coverage with Silica Layers J. Phys. Chem. C 2007 10.1021/jp076120b 111 15133 

  23. Takenaka Catalytic Activity of Highly Durable Pt/CNT Catalysts Covered with Hydrophobic Silica Layers for the Oxygen Reduction Reaction in PEFCs J. Phys. Chem. C 2014 10.1021/jp407928m 118 774 

  24. Aoki Durability Improvement of Pd Core-Pt Shell Structured Catalyst by Porous SiO2 Coating J. Electrochem. Soc. 2018 10.1149/2.0131810jes 165 F737 

  25. Choi Gram-scale synthesis of highly active and durable octahedral PtNi nanoparticle catalysts for proton exchange membrane fuel cell Appl. Catal. B Environ. 2018 10.1016/j.apcatb.2017.12.016 225 530 

  26. Bu Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts Nano Res. 2016 10.1007/s12274-016-1170-2 9 2811 

  27. Turchanin High thermal stability of cross-linked aromatic self-assembled monolayers: Nanopatterning via selective thermal desorption Appl. Phys. Lett. 2007 10.1063/1.2437091 90 053102 

  28. Chung CO electro-oxidation reaction on Pt nanoparticles: Understanding peak multiplicity through thiol derivative molecule adsorption Catal. Today 2017 10.1016/j.cattod.2016.11.053 293-294 2 

  29. Dablemont FTIR and XPS Study of Pt Nanoparticle Functionalization and Interaction with Alumina Langmuir 2008 10.1021/la7028643 24 5832 

  30. Genorio Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules Nat. Mater. 2010 10.1038/nmat2883 9 998 

  31. Wang Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization Electrochem. Commun. 2010 10.1016/j.elecom.2010.09.017 12 1646 

  32. Kim Anomalously increased oxygen reduction reaction activity with accelerated durability test cycles for platinum on thiolated carbon nanotubes Chem. Commun. 2014 10.1039/C3CC46036C 50 596 

  33. Dietrich Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon Appl. Surf. Sci. 2016 10.1016/j.apsusc.2015.12.052 363 406 

  34. Darmakkolla A method to derivatize surface silanol groups to Si-alkyl groups in carbon-doped silicon oxides RSC Adv. 2016 10.1039/C6RA20355H 6 93219 

  35. Wadayama Outermost Surface Structures and Oxygen Reduction Reaction Activities of Co/Pt(111) Bimetallic Systems Fabricated Using Molecular Beam Epitaxy J. Phys. Chem. C 2011 10.1021/jp203845u 115 18589 

  36. Park Sulfide-Adsorption-Enhanced Oxygen Reduction Reaction on Carbon-Supported Pt Electrocatalyst Electrocatalysis 2013 10.1007/s12678-013-0132-7 4 117 

  37. Ferreira Instability of Pt ∕ C Electrocatalysts in Proton Exchange Membrane Fuel Cells: A Mechanistic Investigation J. Electrochem. Soc. 2005 10.1149/1.2050347 152 A2256 

  38. Meier Degradation Mechanisms of Pt/C Fuel Cell Catalysts under Simulated Start-Stop Conditions ACS Catal. 2012 10.1021/cs300024h 2 832 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로