$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A Review of the Pharmacological Activities and Recent Synthetic Advances of γ-Butyrolactones 원문보기

International journal of molecular sciences, v.22 no.5, 2021년, pp.2769 -   

Hur, Joonseong (Natural Products Research Institute, Korea Institute of Science and Technology (KIST), 679 Saimdang-ro, Gangneung 25451, Korea) ,  Jang, Jaebong (hjs1120@snu.ac.kr) ,  Sim, Jaehoon (College of Pharmacy, Korea University, Sejong 30019, Korea)

Abstract AI-Helper 아이콘AI-Helper

γ-Butyrolactone, a five-membered lactone moiety, is one of the privileged structures of diverse natural products and biologically active small molecules. Because of their broad spectrum of biological and pharmacological activities, synthetic methods for γ-butyrolactones have received sig...

Keyword

참고문헌 (171)

  1. 1. Omura S. Tanaka H. Okada Y. Marumo H. Isolation and structure of nanaomycin D, an enantiomer of the antibiotic kalafungin J. Chem. Soc. Chem. Commun. 1976 213 320 321 10.1039/C39760000320 

  2. 2. Yamawaki M. Nishi K. Nishimoto S. Yamauchi S. Akiyama K. Kishida T. Maruyama M. Nishiwaki H. Sugahara T. Immunomodulatory effect of (-)-matairesinol in vivo and ex vivo Biosci. Biotechnol. Biochem. 2011 75 859 863 10.1271/bbb.100781 21597179 

  3. 3. Zhangabylov N.S. Dederer L.Y. Gorbacheva L.B. Vasil’eva S.V. Terekhov A.S. Adekenov S.M. Sesquiterpene lactone arglabin influences DNA synthesis in P388 leukemia cells in vivo Pharm. Chem. J. 2004 38 651 653 10.1007/s11094-005-0052-9 

  4. 4. Rudolphi K. Gerwin N. Verzijl N. van der Kraan P. van den Berg W. Pralnacasan, an inhibitor of interleukin-1 β converting enzyme, reduces joint damage in two murine models of osteoarthritis Osteoarthr. Cart. 2003 11 738 746 10.1016/S1063-4584(03)00153-5 

  5. 5. Chowdhury R. Ghosh S.K. Organo-catalyzed enantioselective synthesis of some β -silyl γ -alkyl γ -butyrolactones as intermediates for natural products Tetrahedron Asymmetry 2011 22 1895 1900 10.1016/j.tetasy.2011.10.013 

  6. 6. Ok T. Jeon A. Lee J. Jung H.L. Chang S.H. Lee H.S. Enantiomerically pure synthesis of β -substituted γ -butyrolactones: A key intermediate to concise synthesis of pregabalin J. Org. Chem. 2007 72 7390 7393 10.1021/jo0709605 17715971 

  7. 7. Brown E. Daugan A. An easy preparation of (-) and (+)- β -piperonyl- γ -butyrolactones, key-intermediates for the synthesis of optically active lignans Tetrahedron Lett. 1985 26 3997 3998 10.1016/S0040-4039(00)98707-0 

  8. 8. Bielitza M. Pietruszka J. An enantioselective Mukaiyama aldol reaction as the key step towards the tetrahydropyran core of psymberin via a γ -butyrolactone intermediate Synlett 2012 23 1625 1628 

  9. 9. Givens R.S. Oettle W.F. Photorearrangement of a γ -butyrolactone: Generation of intermediates in photochemical reactions Anal. Proc. 1969 1164 1165 10.1039/C29690001164 

  10. 10. Vinet L. Zhedanov A. A “missing” family of classical orthogonal polynomials J. Phys. A Math. Theor. 2011 44 51 10.1088/1751-8113/44/8/085201 

  11. 11. Murauski K.J.R. Jaworski A.A. Scheidt K.A. A continuing challenge: N -heterocyclic carbene-catalyzed syntheses of γ -butyrolactones Chem. Soc. Rev. 2018 47 1773 1782 10.1039/C7CS00386B 29372207 

  12. 12. Kitson R.R.A. Millemaggi A. Taylor R.J.K. The renaissance of α -methylene- γ -butyrolactones: New synthetic approaches Angew. Chem. Int. Ed. 2009 48 9426 9451 10.1002/anie.200903108 19938025 

  13. 13. Mao B. Fañanás-Mastral M. Feringa B.L. Catalytic asymmetric synthesis of butenolides and butyrolactones Chem. Rev. 2017 117 10502 10566 10.1021/acs.chemrev.7b00151 28640622 

  14. 14. Seitz M. Reiser O. Synthetic approaches towards structurally diverse γ -butyrolactone natural-product-like compounds Curr. Opin. Chem. Biol. 2005 9 285 292 10.1016/j.cbpa.2005.03.005 15939330 

  15. 15. Vivino F. Al-Hashimi I. Khan Z. Pilocarpine Tablets for the Treatment of Dry Mouth and Dry Eye Symptoms in Patients With Sjogren Syndrome Arch. Intern. Med. 1999 159 174 181 10.1001/archinte.159.2.174 9927101 

  16. 16. Kagawa C.M. Cella J.A. Van Arman C.G. Action of New Steroids in Blocking Effects of Aldosterone and Deoxycorticosterone on Salt Science 1957 126 1015 1016 10.1126/science.126.3281.1015 13486053 

  17. 17. Struthers A. Krum H. Williams G.H. A comparison of the aldosterone-blocking agents eplerenone and spironolactone Clin. Cardiol. 2008 31 153 158 10.1002/clc.20324 18404673 

  18. 18. Krattenmacher R. Drospirenone: Pharmacology and pharmacokinetics of a unique progestogen Contraception 2000 62 29 38 10.1016/S0010-7824(00)00133-5 11024226 

  19. 19. Xu H. Lv M. Tian X. A Review on Hemisynthesis, Biosynthesis, Biological Activities, Mode of Action, and Structure-Activity Relationship of Podophyllotoxins: 2003–2007 Curr. Med. Chem. 2009 16 327 349 10.2174/092986709787002682 19149581 

  20. 20. Yang J. Bogni A. Schuetz E.G. Ratain M. Eileen Dolan M. McLeod H. Gong L. Thorn C. Relling M.V. Klein T.E. Etoposide pathway Pharm. Genom. 2009 19 552 553 10.1097/FPC.0b013e32832e0e7f 19512958 

  21. 21. Clark P.I. Slevin M.L. The Clinical Pharmacology of Etoposide and Teniposide Clin. Pharm. 1987 12 223 252 10.2165/00003088-198712040-00001 3297462 

  22. 22. Tantry U.S. Liu F. Chen G. Gurbel P.A. Vorapaxar in the secondary prevention of atherothrombosis Expert Rev. Cardiovasc. Ther. 2015 13 1293 1305 10.1586/14779072.2015.1109447 26559689 

  23. 23. Chen H. Wu G. Gao S. Guo R. Zhao Z. Yuan H. Liu S. Wu J. Lu X. Yuan X. Discovery of Potent Small-Molecule Inhibitors of Ubiquitin-Conjugating Enzyme UbcH5c from α -Santonin Derivatives J. Med. Chem. 2017 60 6828 6852 10.1021/acs.jmedchem.6b01829 28696694 

  24. 24. Sun Q. Zhang W. Tetrahydronaphtho[1,2-b]furan-2(3H)-One Derivatives and Their Preparation, Pharmaceutical Compositions and Use in the Treatment of Rheumatoid Arthritis WO2019011285 17 1 2019 

  25. 25. Chen L.Z. Wu J. Li K. Wu Q.Q. Chen R. Liu X.H. Ruan B.F. Novel phthalide derivatives: Synthesis and anti-inflammatory activity in vitro and in vivo Eur. J. Med. Chem. 2020 206 112722 10.1016/j.ejmech.2020.112722 32823004 

  26. 26. Ruan B. Li Y. Resveratrol-Phthalide Hybrid Compound for Anti-Inflammatory Research and Its Preparation Method CN110105316 9 8 2019 

  27. 27. Tran Q.T.N. Wong W.S.F. Chai C.L.L. The identification of naturally occurring labdane diterpenoid calcaratarin D as a potential anti-inflammatory agent Eur. J. Med. Chem. 2019 174 33 44 10.1016/j.ejmech.2019.04.023 31022551 

  28. 28. Siedle B. García-Piñeres A.J. Murillo R. Schulte-Mönting J. Castro V. Rüngeler P. Klaas C.A. Da Costa F.B. Kisiel W. Merfort I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-κB J. Med. Chem. 2004 47 6042 6054 10.1021/jm049937r 15537359 

  29. 29. Nicolaou K.C. Sanchini S. Sarlah D. Lu G. Wu T.R. Nomura D.K. Cravatt B.F. Cubitt B. De La Torre J.C. Hessell A.J. Design, synthesis, and biological evaluation of a biyouyanagin compound library Proc. Natl. Acad. Sci. USA 2011 108 6715 6720 10.1073/pnas.1015258108 21245351 

  30. 30. Yang Y.N. Huang X.Y. Feng Z.M. Jiang J.S. Zhang P.C. New Butyrolactone Type Lignans from Arctii Fructus and Their Anti-inflammatory Activities J. Agric. Food Chem. 2015 63 7958 7966 10.1021/acs.jafc.5b02838 26312555 

  31. 31. Singh P. Mittal A. Bhardwaj A. Kaur S. Kumar S. 1-Toluene-sulfonyl-3-[(3′-hydroxy-5′-substituted)- γ -butyrolactone]-indoles: Synthesis, COX-2 inhibition and anti-cancer activities Bioorganic Med. Chem. Lett. 2008 18 85 89 10.1016/j.bmcl.2007.11.010 

  32. 32. Brethon A. Chantalat L. Christin O. Clary L. Fournier J.F. Gastreich M. Harris C.S. Isabet T. Pascau J. Thoreau E. New Caspase-1 inhibitor by scaffold hopping into bio-inspired 3D-fragment space Bioorganic Med. Chem. Lett. 2017 27 5373 5377 10.1016/j.bmcl.2017.11.015 29157864 

  33. 33. Tanaka K. Itazaki H. Yoshida T. Cinatrins, a novel family of phospholipase a2 inhibitors: II. Biological activities J. Antibiot. 1992 45 50 55 10.7164/antibiotics.45.50 1548189 

  34. 34. Brisdelli F. Perilli M. Sellitri D. Piovano M. Garbarino J.A. Nicoletti M. Bozzi A. Amicosante G. Celenza G. Cytotoxic activity and antioxidant capacity of purified lichen metabolites: An in vitro study Phyther. Res. 2013 27 431 437 10.1002/ptr.4739 22628260 

  35. 35. Roy P.K. Roy S. Ueda K. New cytotoxic cembranolides from an Okinawan soft coral, Lobophytum sp. Fitoterapia 2019 136 104162 10.1016/j.fitote.2019.05.001 31075489 

  36. 36. Salaski E.J. Krishnamurthy G. Ding W.D. Yu K. Insaf S.S. Eid C. Shim J. Levin J.I. Tabei K. Toral-Barza L. Pyranonaphthoquinone lactones: A new class of AKT selective kinase inhibitors alkylate a regulatory loop cysteine J. Med. Chem. 2009 52 2181 2184 10.1021/jm900075g 19309081 

  37. 37. Takano S. Hasuda K. Ito A. Koide Y. Ishii F. Haneda I. Chihara S. Koyama Y. A new antibiotic, medermycin J. Antibiot. 1976 29 765 768 10.7164/antibiotics.29.765 

  38. 38. Bergy M.E. Kalafungin, a new broade spectrum antibiotic J. Antibiot. 1968 21 454 457 10.7164/antibiotics.21.454 

  39. 39. Iwai Y. Kra A. Takahashi Y. Hayashi T. Awaya J. Masuma R. iwa R. mura S. Production of deoxyfrenolicin and a new antibiotic, frenolicin B by streptomyces roseofulvus strain AM-3867 J. Antibiot. 1978 31 959 965 10.7164/antibiotics.31.959 

  40. 40. Lee K.-H. Rice G.K. Hall I.H. Amarnath V. Antitumor agents. 86. Synthesis and cytotoxicity of .alpha.-methylene-.gamma.-lactone-bearing purines J. Med. Chem. 1987 30 586 588 10.1021/jm00386a025 3820231 

  41. 41. Huth J.R. Park C. Petros A.M. Kunzer A.R. Wendt M.D. Wang X. Lynch C.L. Mack J.C. Swift K.M. Judge R.A. Discovery and Design of Novel HSP90 Inhibitors Using Multiple Fragment-based Design Strategies Chem. Biol. Drug Des. 2007 70 1 12 10.1111/j.1747-0285.2007.00535.x 17630989 

  42. 42. Nozaki Y. Katayama N. Harada S. Ono H. Okazaki H. Lactivicin, a naturally occurring non-β-lactam antibiotic having β-lactam-like action: Biological activities and mode of action J. Antibiot. 1989 42 84 93 10.7164/antibiotics.42.84 2493440 

  43. 43. Nozaki Y. Katayama N. Ono H. Tsubotani S. Harada S. Okazaki H. Nakao Y. Binding of a non-β-lactam antibiotic to penicillin-binding proteins Nature 1987 325 179 180 10.1038/325179a0 3543695 

  44. 44. Gal Z. Koncz A. Szabo I. Deak E. Benko I. Barabas G. Hernandi F. Kovacs P. A synthetic γ-lactone group with β-lactamase inhibitory and sporulation initiation effects J. Chemother. 2000 12 274 279 10.1179/joc.2000.12.4.274 10949975 

  45. 45. Pavlovi D. Mutak S. Andreotti D. Biondi S. Cardullo F. Paio A. Piga E. Donati D. Lociuro S. Synthesis and structure-activity relationships of α -amino- γ -lactone ketolides: A novel class of macrolide antibiotics ACS Med. Chem. Lett. 2014 5 1133 1137 10.1021/ml500279k 25313326 

  46. 46. Kochikyan T.V. Arutyunyan E.V. Samvelyan M.A. Arutyunyan V.S. Avetisyan A.A. Paronikyan R.V. Stepanyan G.M. Synthesis and antibacterial properties of hydrazonothiazolyl derivatives of saturated 2,4,4-substituted butanolides Pharm. Chem. J. 2009 43 144 147 10.1007/s11094-009-0254-7 

  47. 47. Mazur M. Gładkowski W. Podkowik M. Bania J. Nawrot J. Białoska A. Wawrzeczyk C. Lactones 43. New biologically active lactones: β -cyclocitral derivatives Pest Manag. Sci. 2014 70 286 294 10.1002/ps.3557 23703876 

  48. 48. Hamann H.J. Abutaleb N.S. Pal R. Seleem M.N. Ramachandran P.V. β , γ -Diaryl α -methylene- γ -butyrolactones as potent antibacterials against methicillin-resistant Staphylococcus aureus Bioorg. Chem. 2020 104 104183 10.1016/j.bioorg.2020.104183 32971415 

  49. 49. Gładkowski W. Skrobiszewski A. Mazur M. Siepka M. Pawlak A. Obmiska-Mrukowicz B. Białoska A. Poradowski D. Drynda A. Urbaniak M. Synthesis and anticancer activity of novel halolactones with β -aryl substituents from simple aromatic aldehydes Tetrahedron 2013 69 10414 10423 10.1016/j.tet.2013.09.094 

  50. 50. Włoch A. Stygar D. Bahri F. Baanów B. Kuropka P. Chełmecka E. Pruchnik H. Gładkowski W. Antiproliferative, antimicrobial and antiviral activity of β -aryl- δ -iodo- γ -lactones, their effect on cellular oxidative stress markers and biological membranes Biomolecules 2020 10 1594 10.3390/biom10121594 33255306 

  51. 51. Feng J.T. Ma Z.Q. Li J.H. He J. Xu H. Zhang X. Synthesis and antifungal activity of carabrone derivatives Molecules 2010 15 6485 6492 10.3390/molecules15096485 20877238 

  52. 52. Jun-Tao F. De-Long W. Yong-Ling W. He Y. Xing Z. New antifungal scaffold derived from a natural pharmacophore: Synthesis of α -methylene- γ -butyrolactone derivatives and their antifungal activity against Colletotrichum lagenarium Bioorganic Med. Chem. Lett. 2013 23 4393 4397 10.1016/j.bmcl.2013.05.073 

  53. 53. Wu Y. Wang D. Gao Y. Feng J. Zhang X. New α -methylene- γ -butyrolactone derivatives as potential fungicidal agents: Design, synthesis and antifungal activities Molecules 2016 21 130 10.3390/molecules21020130 26805804 

  54. 54. Björn Bode H. Irschik H. Wenzel S.C. Reichenbach H. Müller R. Höfle G. The leupyrrins: A structurally unique family of secondary metabolites from the myxobacterium Sorangium cellulosum J. Nat. Prod. 2003 66 1203 1206 10.1021/np030109v 14510597 

  55. 55. Herkommer D. Thiede S. Wosniok P.R. Dreisigacker S. Tian M. Debnar T. Irschik H. Menche D. Stereochemical determination of the leupyrrins and total synthesis of leupyrrin A1 J. Am. Chem. Soc. 2015 137 4086 4089 10.1021/jacs.5b01894 25769018 

  56. 56. Wosniok P.R. Knopf C. Dreisigacker S. Orozco-Rodriguez J.M. Hinkelmann B. Mueller P.P. Brönstrup M. Menche D. SAR Studies of the Leupyrrins: Design and Total Synthesis of Highly Potent Simplified Leupylogs Chem. A Eur. J. 2020 26 15074 15078 10.1002/chem.202002622 

  57. 57. Yang N. Wang Q.-H. Wang W.-Q. Wang J. Li F. Tan S.-P. Cheng M.-S. The design, synthesis and in vitro immunosuppressive evaluation of novel isobenzofuran derivatives Bioorg. Med. Chem. Lett. 2012 22 53 56 10.1016/j.bmcl.2011.11.078 22172700 

  58. 58. Reinhardt J.K. Klemd A.M. Danton O. De Mieri M. Smieško M. Huber R. Bürgi T. Gründemann C. Hamburger M. Sesquiterpene Lactones from Artemisia argyi: Absolute Configuration and Immunosuppressant Activity J. Nat. Prod. 2019 82 1424 1433 10.1021/acs.jnatprod.8b00791 31181920 

  59. 59. Chinthakindi P.K. Singh J. Gupta S. Nargotra A. Mahajan P. Kaul A. Ahmed Z. Koul S. Sangwan P.L. Synthesis of α -santonin derivatives for diminutive effect on T and B-cell proliferation and their structure activity relationships Eur. J. Med. Chem. 2017 127 1047 1058 10.1016/j.ejmech.2016.11.018 27847171 

  60. 60. Xiang M. Liu T. Tan W. Ren H. Li H. Liu J. Cao H. Cheng Q. Liu X. Zhu H. Effects of kinsenoside, a potential immunosuppressive drug for autoimmune hepatitis, on dendritic cells/CD8 + T cells communication in mice Hepatology 2016 64 2135 2150 10.1002/hep.28825 27639182 

  61. 61. Zhang Y. Xiang M. Kinsenoside Having Good Therapeutic Effect on Autoimmune Hepatitis (AIH), and Its Application and Preparation Method CN106317142 11 1 2017 

  62. 62. Liu X. Fu J. Yao X.J. Yang J. Liu L. Xie T.G. Jiang P.C. Jiang Z.H. Zhu G.Y. Phenolic Constituents Isolated from the Twigs of Cinnamomum cassia and Their Potential Neuroprotective Effects J. Nat. Prod. 2018 81 1333 1342 10.1021/acs.jnatprod.7b00924 29883114 

  63. 63. Wang S. Jin D.Q. Xie C. Wang H. Wang M. Xu J. Guo Y. Isolation, characterization, and neuroprotective activities of sesquiterpenes from Petasites japonicus Food Chem. 2013 141 2075 2082 10.1016/j.foodchem.2013.04.116 23870930 

  64. 64. Yang S. Wang S. Peng N. Xie Z. Wang P. Zhao C. Wei L. Yang H. Zhao B. Miao J. Butyrolactone derivative 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran- 2(3H)-one protects against amyloid-β peptides-induced cytotoxicity in PC12 cells J. Alzheimer’s Dis. 2012 28 345 356 10.3233/JAD-2011-110863 21988929 

  65. 65. Wei L. Yang H. Xie Z. Yang S. Yang H. Zhao C. Wang P. Xu S. Miao J. Zhao B. A Butyrolactone Derivative 3BDO Alleviates Memory Deficits and Reduces Amyloid-β Deposition in an AβPP/PS1 Transgenic Mouse Model J. Alzheimer’s Dis. 2012 30 531 543 10.3233/JAD-2012-111985 22451314 

  66. 66. Min B.S. Na M.K. Oh S.R. Ahn K.S. Jeong G.S. Li G. Lee S.K. Joung H. Lee H.K. New furofuran and butyrolactone lignans with antioxidant activity from the stem bark of Styrax japonica J. Nat. Prod. 2004 67 1980 1984 10.1021/np040113m 15620237 

  67. 67. Lohezic-Le Devehat F. Tomasi S. Elix J.A. Bernard A. Rouaud I. Uriac P. Boustie J. Stictic acid derivatives from the lichen Usnea articulata and their antioxidant activities J. Nat. Prod. 2007 70 1218 1220 10.1021/np070145k 17629329 

  68. 68. Wu W. Liu L. Zhu H. Sun Y. Wu Y. Liao H. Gui Y. Li L. Liu L. Sun F. Butyrolactone-I, an efficient α -glucosidase inhibitor, improves type 2 diabetes with potent TNF- α –lowering properties through modulating gut microbiota in db/db mice FASEB J. 2019 33 12616 12629 10.1096/fj.201901061R 31450982 

  69. 69. Trécant C. Dlubala A. George P. Pichat P. Ripoche I. Troin Y. Synthesis and biological evaluation of analogues of M6G Eur. J. Med. Chem. 2011 46 4035 4041 10.1016/j.ejmech.2011.05.076 21689868 

  70. 70. Prévost C. Iodo-Silver Benzoate and Its Use in the Oxidation of Ethylene Derivatives into α -Glycols Compt. Rend 1933 196 1129 1131 

  71. 71. Woodward R.B. Brutcher F.V. Jr. cis -Hydroxylation of a synthetic steroid intermediate with iodine, silver acetate and wet acetic acid J. Am. Chem. Soc. 1958 80 209 211 10.1021/ja01534a053 

  72. 72. Jacobsen E.N. Marko I. Mungall W.S. Schroeder G. Sharpless K.B. Asymmetric dihydroxylation via ligand-accelerated catalysis J. Am. Chem. Soc. 1988 110 1968 1970 10.1021/ja00214a053 

  73. 73. Kang Y.-B. Gade L.H. Triflic Acid Catalyzed Oxidative Lactonization and Diacetoxylation of Alkenes Using Peroxyacids as Oxidants J. Org. Chem. 2012 77 1610 1615 10.1021/jo202491y 22283591 

  74. 74. Rosatella A.A. Afonso C.A.M. Brønsted Acid-Catalyzed Dihydroxylation of Olefins in Aqueous Medium Adv. Synth. Catal. 2011 353 2920 2926 10.1002/adsc.201100187 

  75. 75. Kang Y.-B. Chen X.-M. Yao C.-Z. Ning X.-S. Direct oxidative lactonization of alkenoic acids mediated solely by NaIO 4 : Beyond a simple oxidant Chem. Commun. 2016 52 6193 6196 10.1039/C6CC02246D 

  76. 76. Triandafillidi I. Raftopoulou M. Savvidou A. Kokotos C.G. Organocatalytic Synthesis of Lactones by the Oxidation of Alkenoic Acids ChemCatChem 2017 9 4120 4124 10.1002/cctc.201700837 

  77. 77. Dagenais R. Lussier T. Legault C.Y. Iodine(III)-Mediated Contraction of 3,4-Dihydropyranones: Access to Polysubstituted γ -Butyrolactones Org. Lett. 2019 21 5290 5294 10.1021/acs.orglett.9b01893 31247750 

  78. 78. Karila D. Leman L. Dodd R.H. Copper-Catalyzed Iminoiodane-Mediated Aminolactonization of Olefins: Application to the Synthesis of 5,5-Disubstituted Butyrolactones Org. Lett. 2011 13 5830 5833 10.1021/ol202436a 21995549 

  79. 79. Evans D.A. Woerpel K.A. Hinman M.M. Faul M.M. Bis(oxazolines) as chiral ligands in metal-catalyzed asymmetric reactions. Catalytic, asymmetric cyclopropanation of olefins J. Am. Chem. Soc. 1991 113 726 728 10.1021/ja00002a080 

  80. 80. Evans D.A. Bilodeau M.T. Faul M.M. Development of the Copper-Catalyzed Olefin Aziridination Reaction J. Am. Chem. Soc. 1994 116 2742 2753 10.1021/ja00086a007 

  81. 81. Tamaru Y. Mizutani M. Furukawa Y. Kawamura S. Yoshida Z. Yanagi K. Minobe M. 1,3-Asymmetric induction: Highly stereoselective synthesis of 2,4- trans -disubstituted γ -butyrolactones and γ -butyrothiolactones J. Am. Chem. Soc. 1984 106 1079 1085 10.1021/ja00316a044 

  82. 82. Evans D.A. Ennis M.D. Mathre D.J. Asymmetric alkylation reactions of chiral imide enolates. A practical approach to the enantioselective synthesis of α -substituted carboxylic acid derivatives J. Am. Chem. Soc. 1982 104 1737 1739 10.1021/ja00370a050 

  83. 83. Moriyama K. Izumisawa Y. Togo H. Oxidative Intramolecular Bromo-Amination of N -Alkenyl Sulfonamides via Umpolung of Alkali Metal Bromides J. Org. Chem. 2011 76 7249 7255 10.1021/jo201113r 21823624 

  84. 84. Moriyama K. Sugiue T. Nishinohara C. Togo H. Divergent Synthesis of α , γ -Disubstituted γ -Butyrolactones through Diastereoselective Bromolactonization with Alkali Metal Bromide: Asymmetric Total Synthesis of (+)-Dubiusamine C J. Org. Chem. 2015 80 9132 9140 10.1021/acs.joc.5b01497 26313874 

  85. 85. Balkrishna S.J. Prasad C.D. Panini P. Detty M.R. Chopra D. Kumar S. Isoselenazolones as Catalysts for the Activation of Bromine: Bromolactonization of Alkenoic Acids and Oxidation of Alcohols J. Org. Chem. 2012 77 9541 9552 10.1021/jo301486c 23046286 

  86. 86. Detty M.R. Friedman A.E. McMillan M. A Stepwise Mechanism for Oxidative Addition of Bromine to Organoselenium(II) and Organotellurium(II) Compounds Organometallics 1994 13 3338 3345 10.1021/om00020a053 

  87. 87. Rosocha G. Batey R.A. Synthesis of 2-bromo-1-aryl-1H-indenes via a Ag(I) promoted domino 2π-electrocyclic ring-opening/4π-electrocyclization reaction of 1,2-diaryl substituted gem -dibromocyclopropanes Tetrahedron 2013 69 8758 8768 10.1016/j.tet.2013.07.086 

  88. 88. Kalmode H.P. Handore K.L. Reddy D.S. Access to Fused Tricyclic γ -Butyrolactones, A Natural Product-like Scaffold J. Org. Chem. 2017 82 7614 7620 10.1021/acs.joc.7b00794 28636370 

  89. 89. Kim S.J. Lough A.J. Batey R.A. An Approach to the 9-Oxo-10-oxabicyclo[5.3.0]dec-2-ene Core of the Guaianolide and Pseudoguaianolide Sesquiterpenes via a Domino Electrocyclic Ring-Opening/Carboxylic Acid Trapping of a gem -Dibromocyclopropane J. Org. Chem. 2018 83 13799 13810 10.1021/acs.joc.8b02081 30303376 

  90. 90. Bandini M. Eichholzer A. Enantioselective Gold-Catalyzed Allylic Alkylation of Indoles with Alcohols: An Efficient Route to Functionalized Tetrahydrocarbazoles Angew. Chem. Int. Ed. 2009 48 9533 9537 10.1002/anie.200904388 

  91. 91. Bandini M. Eichholzer A. Gualandi A. Quinto T. Savoia D. Creating Chemical Diversity in Indole Compounds by Merging Au and Ru Catalysis ChemCatChem 2010 2 661 665 10.1002/cctc.201000077 

  92. 92. Marion N. Gealageas R. Nolan S.P. [(NHC)AuI]-Catalyzed Rearrangement of Allylic Acetates Org. Lett. 2007 9 2653 2656 10.1021/ol070843w 17555323 

  93. 93. Wang Y.-H. Zhu L.-L. Zhang Y.-X. Chen Z. Diastereoselective γ -vinyl butyrolactone synthesis via gold catalyzed cyclization of allylic acetate Chem. Commun. 2010 46 577 579 10.1039/B913348H 20062867 

  94. 94. Chiarucci M. Locritani M. Cera G. Bandini M. Gold(I)-catalyzed synthesis of γ -vinylbutyrolactones by intramolecular oxaallylic alkylation with alcohols Beilstein J. Org. Chem. 2011 7 1198 1204 10.3762/bjoc.7.139 21977203 

  95. 95. Liu J. Miotto R.J. Segard J. Erb A.M. Aponick A. Catalytic Dehydrative Lactonization of Allylic Alcohols Org. Lett. 2018 20 3034 3038 10.1021/acs.orglett.8b01063 29737174 

  96. 96. Okada T. Sakaguchi K. Shinada T. Ohfune Y. Au-catalyzed cyclization of allenylsilanes. Regioselective conversion to 2-amino-4-silylmethylene γ -butyrolactone Tetrahedron Lett. 2011 52 5740 5743 10.1016/j.tetlet.2011.07.144 

  97. 97. Guo W. Cheng H.-G. Chen L.-Y. Xuan J. Feng Z.-J. Chen J.-R. Lu L.-Q. Xiao W.-J. De Novo Synthesis of γ , γ -Disubstituted Butyrolactones through a Visible Light Photocatalytic Arylation–Lactonization Sequence Adv. Synth. Catal. 2014 356 2787 2793 10.1002/adsc.201400041 

  98. 98. Yasu Y. Arai Y. Tomita R. Koike T. Akita M. Highly Regio- and Diastereoselective Synthesis of CF 3 -Substituted Lactones via Photoredox-Catalyzed Carbolactonization of Alkenoic Acids Org. Lett. 2014 16 780 783 10.1021/ol403500y 24422891 

  99. 99. Sha W. Ni S. Han J. Pan Y. Access to Alkyl-Substituted Lactone via Photoredox-Catalyzed Alkylation/Lactonization of Unsaturated Carboxylic Acids Org. Lett. 2017 19 5900 5903 10.1021/acs.orglett.7b02899 29039204 

  100. 100. Wei X.-J. Yang D.-T. Wang L. Song T. Wu L.-Z. Liu Q. A Novel Intermolecular Synthesis of γ -Lactones via Visible-Light Photoredox Catalysis Org. Lett. 2013 15 6054 6057 10.1021/ol402954t 24215594 

  101. 101. Montgomery T.P. Hassan A. Park B.Y. Krische M.J. Enantioselective conversion of primary alcohols to α -exo-methylene γ -butyrolactones via iridium-catalyzed C-C bond-forming transfer hydrogenation: 2-(Alkoxycarbonyl)allylation J. Am. Chem. Soc. 2012 134 11100 11103 10.1021/ja303839h 22734694 

  102. 102. Spielmann K. Niel G. De Figueiredo R.M. Campagne J.M. Catalytic nucleophilic “umpoled” π-allyl reagents Chem. Soc. Rev. 2018 47 1159 1173 10.1039/C7CS00449D 29323678 

  103. 103. Leung J.C. Geary L.M. Chen T.Y. Zbieg J.R. Krische M.J. Direct, redox-neutral prenylation and geranylation of secondary carbinol C-H bonds: C4-regioselectivity in ruthenium-catalyzed C-C couplings of dienes to α -hydroxy esters J. Am. Chem. Soc. 2012 134 15700 15703 10.1021/ja3075049 22985393 

  104. 104. McInturff E.L. Mowat J. Waldeck A.R. Krische M.J. Ruthenium-catalyzed hydrohydroxyalkylation of acrylates with diols and α -hydroxycarbonyl compounds to form spiro- and α -methylene- γ - butyrolactones J. Am. Chem. Soc. 2013 135 17230 17235 10.1021/ja410533y 24187991 

  105. 105. Chen W. Yang Q. Zhou T. Tian Q. Zhang G. Enantioselective Synthesis of α -exo-Methylene γ -Butyrolactones via Chromium Catalysis Org. Lett. 2015 17 5236 5239 10.1021/acs.orglett.5b02597 26496023 

  106. 106. McManus H.A. Guiry P.J. Coupling of Bulky, Electron-Deficient Partners in Aryl Amination in the Preparation of Tridentate Bis(oxazoline) Ligands for Asymmetric Catalysis J. Org. Chem. 2002 67 8566 8573 10.1021/jo0262558 12444640 

  107. 107. Murata Y. Takahashi M. Yagishita F. Sakamoto M. Sengoku T. Yoda H. Construction of Spiro-Fused 2-Oxindole/ α -Methylene- γ -Butyrolactone Systems with Extremely High Enantioselectivity via Indium-Catalyzed Amide Allylation of N -Methyl Isatin Org. Lett. 2013 15 6182 6185 10.1021/ol403014u 24224753 

  108. 108. Hoffmann H.M.R. Rabe J. Synthesis and Biological Activity of α -Methylene- γ -butyrolactones Angew. Chem. Int. Ed. 1985 24 94 110 10.1002/anie.198500941 

  109. 109. Takahashi M. Murata Y. Yagishita F. Sakamoto M. Sengoku T. Yoda H. Catalytic enantioselective amide allylation of isatins and its application in the synthesis of 2-oxindole derivatives spiro-fused to the α -methylene- γ -butyrolactone functionality Chem. Eur. J. 2014 20 11091 11100 10.1002/chem.201403357 25049083 

  110. 110. Nair V. Vellalath S. Babu B.P. Recent advances in carbon–carbon bond-forming reactions involving homoenolates generated by NHC catalysis Chem. Soc. Rev. 2008 37 2691 10.1039/b719083m 19020682 

  111. 111. Sun L.H. Shen L.T. Ye S. Highly diastereo- and enantioselective NHC-catalyzed [3+2] annulation of enals and isatins Chem. Commun. 2011 47 10136 10138 10.1039/c1cc13860j 

  112. 112. Dugal-Tessier J. O’Bryan E.A. Schroeder T.B.H. Cohen D.T. Scheidt K.A. An N-heterocyclic carbene/lewis acid strategy for the stereoselective synthesis of spirooxindole lactones Angew. Chem. Int. Ed. 2012 51 4963 4967 10.1002/anie.201201643 

  113. 113. Jin Z. Jiang K. Fu Z. Torres J. Zheng P. Yang S. Song B.-A. Chi Y.R. Nucleophilic β -Carbon Activation of Propionic Acid as a 3-Carbon Synthon by Carbene Organocatalysis Chem. Eur. J. 2015 21 9360 9363 10.1002/chem.201501481 26013883 

  114. 114. Xie Y. Yu C. Li T. Tu S. Yao C. An NHC-catalyzed in situ activation strategy to β -functionalize saturated carboxylic acid: An enantioselective formal [3+2] annulation for spirocyclic oxindolo- γ -butyrolactones Chem. Eur. J. 2015 21 5355 5359 10.1002/chem.201500345 25689040 

  115. 115. Xu J. Yuan S. Miao M. Chen Z. 1-Hydroxybenzotriazole-Assisted, N -Heterocyclic Carbene Catalyzed β -Functionalization of Saturated Carboxylic Esters: Access to Spirooxindole Lactones J. Org. Chem. 2016 81 11454 11460 10.1021/acs.joc.6b02032 27709941 

  116. 116. Goodman C.G. Walker M.M. Johnson J.S. Enantioconvergent synthesis of functionalized γ -butyrolactones via (3+2)-annulation J. Am. Chem. Soc. 2015 137 122 125 10.1021/ja511701j 25533016 

  117. 117. Shaw M.H. Twilton J. MacMillan D.W.C. Photoredox Catalysis in Organic Chemistry J. Org. Chem. 2016 81 6898 6926 10.1021/acs.joc.6b01449 27477076 

  118. 118. Jeffrey J.L. Terrett J.A. MacMillant D.W.C. O-H hydrogen bonding promotes H-atom transfer from α C-H bonds for C-alkylation of alcohols Science 2015 349 1532 1536 10.1126/science.aac8555 26316601 

  119. 119. Kaplaneris N. Bisticha A. Papadopoulos G.N. Limnios D. Kokotos C.G. Photoorganocatalytic synthesis of lactones: Via a selective C-H activation-alkylation of alcohols Green Chem. 2017 19 4451 4456 10.1039/C7GC01903C 

  120. 120. Shono T. Ohmizu H. Kawakami S. Sugiyama H. Electroreductive hydrocoupling of activated olefins with ketones or aldehydes in the presence of trimethylchlorosilane Tetrahedron Lett. 1980 21 5029 5032 10.1016/S0040-4039(00)71124-5 

  121. 121. Kise N. Hamada Y. Sakurai T. Electroreductive coupling of optically active α , β -unsaturated carbonyl compounds with diaryl ketones: Asymmetric synthesis of 4,5,5-trisubstituted γ -butyrolactones Org. Lett. 2014 16 3348 3351 10.1021/ol5013789 24901637 

  122. 122. Cao J. Dong S. Jiang D. Zhu P. Zhang H. Li R. Li Z. Wang X. Tang W. Du D. β -Functionalization of Indolin-2-one-Derived Aliphatic Acids for the Divergent Synthesis of Spirooxindole γ -Butyrolactones J. Org. Chem. 2017 82 4186 4193 10.1021/acs.joc.7b00153 28326774 

  123. 123. Khopade T.M. Sonawane A.D. Arora J.S. Bhat R.G. Direct Organocatalytic Multicomponent Synthesis of Enantiopure γ -Butyrolactones via Tandem Knoevenagel-Michael-Lactonization Sequence Adv. Synth. Catal. 2017 359 3905 3910 10.1002/adsc.201701084 

  124. 124. Hamid M.H.S.A. Slatford P.A. Williams J.M.J. Borrowing Hydrogen in the Activation of Alcohols Adv. Synth. Catal. 2007 349 1555 1575 10.1002/adsc.200600638 

  125. 125. Kim S.W. Zhang W. Krische M.J. Catalytic Enantioselective Carbonyl Allylation and Propargylation via Alcohol-Mediated Hydrogen Transfer: Merging the Chemistry of Grignard and Sabatier Acc. Chem. Res. 2017 50 2371 2380 10.1021/acs.accounts.7b00308 28792731 

  126. 126. Peña-López M. Neumann H. Beller M. Ruthenium pincer-catalyzed synthesis of substituted γ -butyrolactones using hydrogen autotransfer methodology Chem. Commun. 2015 51 13082 13085 10.1039/C5CC01708D 

  127. 127. Keshavarz M. Ahmady A.Z. Mostoufi A. Mohtasham N. One-pot green regioselesctive synthesis of γ -lactones from epoxides and ketene silyl acetals using 1,3-Dimethylimidazolium fluoride as a recoverable Metal-free catalyst Molecules 2017 22 1385 10.3390/molecules22091385 28846652 

  128. 128. Zeller M.A. Riener M. Nicewicz D.A. Butyrolactone synthesis via polar radical crossover cycloaddition reactions: Diastereoselective syntheses of methylenolactocin and protolichesterinic acid Org. Lett. 2014 16 4810 4813 10.1021/ol5022993 25190259 

  129. 129. Cavanaugh C.L. Nicewicz D.A. Synthesis of α -Benzyloxyamino- γ -butyrolactones via a Polar Radical Crossover Cycloaddition Reaction Org. Lett. 2015 17 6082 6085 10.1021/acs.orglett.5b03113 26646284 

  130. 130. Triandafillidi I. Kokotou M.G. Kokotos C.G. Photocatalytic Synthesis of γ-Lactones from Alkenes: High-Resolution Mass Spectrometry as a Tool to Study Photoredox Reactions Org. Lett. 2018 20 36 39 10.1021/acs.orglett.7b03256 29215290 

  131. 131. Yousuf S.K. Mukherjee D. L M. Taneja S.C. Highly regio-and stereoselective one-pot synthesis of carbohydrate-based butyrolactones Org. Lett. 2011 13 576 579 10.1021/ol102723c 21244043 

  132. 132. Ye Z. Cai X. Li J. Dai M. Catalytic Cyclopropanol Ring Opening for Divergent Syntheses of γ -Butyrolactones and δ -Ketoesters Containing All-Carbon Quaternary Centers ACS Catal. 2018 8 5907 5914 10.1021/acscatal.8b00711 

  133. 133. Grandjean J.M.M. Nicewicz D.A. Synthesis of highly substituted tetrahydrofurans by catalytic polar-radical-crossover cycloadditions of alkenes and alkenols Angew. Chem. Int. Ed. 2013 52 3967 3971 10.1002/anie.201210111 

  134. 134. Gesmundo N.J. Grandjean J.M.M. Nicewicz D.A. Amide and amine nucleophiles in polar radical crossover cycloadditions: Synthesis of γ -lactams and pyrrolidines Org. Lett. 2015 17 1316 1319 10.1021/acs.orglett.5b00316 25695366 

  135. 135. Wu X.F. Fang X. Wu L. Jackstell R. Neumann H. Beller M. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: A personal account Acc. Chem. Res. 2014 47 1041 1053 10.1021/ar400222k 24564478 

  136. 136. Babjak M. Markovi M. Kandríková B. Gracza T. Homogeneous cyclocarbonylation of alkenols with iron pentacarbonyl Synth. 2014 46 809 816 10.1055/s-0033-1340619 

  137. 137. Lopatka P. Markovi M. Koóš P. Ley S.V. Gracza T. Continuous Pd-Catalyzed Carbonylative Cyclization Using Iron Pentacarbonyl as a CO Source J. Org. Chem. 2019 84 14394 14406 10.1021/acs.joc.9b02453 31646860 

  138. 138. Li J. Yang S. Wu W. Jiang H. Novel palladium-catalyzed cascade carboxylative annulation to construct functionalized γ -lactones in ionic liquids Chem. Commun. 2014 50 1381 1383 10.1039/C3CC48052F 24346056 

  139. 139. Yang S.-R. Jiang H.-F. Li Y.-Q. Chen H.-J. Luo W. Xu Y.-B. Protonolysis of the carbon–palladium bond in palladium(II)-catalyzed enyne cyclization in imidazolium-type ionic liquids Tetrahedron 2008 64 2930 2937 10.1016/j.tet.2008.01.079 

  140. 140. Higashimae S. Tamai T. Nomoto A. Ogawa A. Selective Thiolative Lactonization of Internal Alkynes Bearing a Hydroxyl Group with Carbon Monoxide and Organic Disulfides Catalyzed by Transition-Metal Complexes J. Org. Chem. 2015 80 7126 7133 10.1021/acs.joc.5b00977 26072971 

  141. 141. Rosa D. Nikolaev A. Nithiy N. Orellana A. Palladium-Catalyzed Cross-Coupling Reactions of Cyclopropanols Synlett 2015 26 441 448 

  142. 142. Davis D.C. Walker K.L. Hu C. Zare R.N. Waymouth R.M. Dai M. Catalytic Carbonylative Spirolactonization of Hydroxycyclopropanols J. Am. Chem. Soc. 2016 138 10693 10699 10.1021/jacs.6b06573 27459274 

  143. 143. Breit B. Synthetic aspects of stereoselective hydroformylation Acc. Chem. Res. 2003 36 264 275 10.1021/ar0200596 12693924 

  144. 144. Ueki Y. Ito H. Usui I. Breit B. Formation of quaternary carbon centers by highly regioselective hydroformylation with catalytic amounts of a reversibly bound directing group Chem. Eur. J. 2011 17 8555 8558 10.1002/chem.201101186 21728199 

  145. 145. Deng Y. Wang H. Sun Y. Wang X. Principles and Applications of Enantioselective Hydroformylation of Terminal Disubstituted Alkenes ACS Catal. 2015 5 6828 6837 10.1021/acscatal.5b01300 

  146. 146. You C. Li S. Li X. Lv H. Zhang X. Enantioselective Rh-Catalyzed Anti-Markovnikov Hydroformylation of 1,1-Disubstituted Allylic Alcohols and Amines: An Efficient Route to Chiral Lactones and Lactams ACS Catal. 2019 9 8529 8533 10.1021/acscatal.9b02667 

  147. 147. Li S. Ma S. Highly selective nickel-catalyzed methyl-carboxylation of homopropargylic alcohols for α -alkylidene- γ ;-butyrolactones Org. Lett. 2011 13 6046 6049 10.1021/ol202520x 22007856 

  148. 148. Li S. Ma S. CO 2-activation for γ-butyrolactones and its application in the total synthesis of (±)-heteroplexisolide e Chem. Asian J. 2012 7 2411 2418 10.1002/asia.201200467 22807405 

  149. 149. Lloyd M.G. Taylor R.J.K. Unsworth W.P. A One-Pot C–H Insertion/Olefination Sequence for the Formation of α -Alkylidene- γ -butyrolactones Org. Lett. 2014 16 2772 2775 10.1021/ol501092m 24788001 

  150. 150. Lloyd M.G. D’Acunto M. Taylor R.J.K. Unsworth W.P. α -Alkylidene- γ -butyrolactone synthesis via one-pot C–H insertion/olefination: Substrate scope and the total synthesis of (±)-cedarmycins A and B Tetrahedron 2015 71 7107 7123 10.1016/j.tet.2014.09.054 

  151. 151. Lloyd M.G. D’Acunto M. Taylor R.J.K. Unsworth W.P. A selective C–H insertion/olefination protocol for the synthesis of α -methylene- γ -butyrolactone natural products Org. Biomol. Chem. 2016 14 1641 1645 10.1039/C5OB02579F 26695888 

  152. 152. Schwarz W. Schossig J. Rossbacher R. Pinkos R. Höke H. Butyrolactone Ullmann’s Encyclopedia of Industrial Chemistry Wiley Weinheim, Germany 2019 1 7 9783527306732 

  153. 153. Yim H. Haselbeck R. Niu W. Pujol-Baxley C. Burgard A. Boldt J. Khandurina J. Trawick J.D. Osterhout R.E. Stephen R. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol Nat. Chem. Biol. 2011 7 445 452 10.1038/nchembio.580 21602812 

  154. 154. Hwang D.W. Kashinathan P. Lee J.M. Lee J.H. Lee U. Hwang J.-S. Hwang Y.K. Chang J.-S. Production of γ -butyrolactone from biomass-derived 1,4-butanediol over novel copper-silica nanocomposite Green Chem. 2011 13 1672 10.1039/c1gc15261k 

  155. 155. Zhang B. Zhu Y. Ding G. Zheng H. Li Y. Modification of the supported Cu/SiO 2 catalyst by alkaline earth metals in the selective conversion of 1,4-butanediol to γ -butyrolactone Appl. Catal. A Gen. 2012 443–444 191 201 10.1016/j.apcata.2012.07.042 

  156. 156. Reddy K.H.P. Anand N. Venkateswarlu V. Rao K.S.R. Burri D.R. A selective synthesis of 1-phenylethanol and γ -butyrolactone through coupling processes over Cu/MgO catalysts J. Mol. Catal. A Chem. 2012 355 180 185 10.1016/j.molcata.2011.12.014 

  157. 157. Hu Q. Fan G. Yang L. Cao X. Zhang P. Wang B. Li F. A gas-phase coupling process for simultaneous production of γ-butyrolactone and furfuryl alcohol without external hydrogen over bifunctional base-metal heterogeneous catalysts Green Chem. 2016 18 2317 2322 10.1039/C5GC02924D 

  158. 158. Prasad H. Kannapu R. Suh Y.W. Narani A. Coupling of 1,4-Butanediol Dehydrogenation with Nitrobenzene Hydrogenation for Simultaneous Synthesis of γ -Butyrolactone and Aniline over Promoted Cu-MgO Catalysts: Effect of Promoters Catal. Lett. 2017 147 90 101 

  159. 159. Hari K. Reddy P. Suh Y. Anand N. David B. Seetha K. Rao R. Coupling of ortho -chloronitrobenzene hydrogenation with 1,4-butanediol dehydrogenation over Cu-MgO catalysts: A hydrogen free process Catal. Commun. 2017 95 21 25 

  160. 160. Nagaiah P. Venkat Rao M. Thirupathaiah K. Venkateshwarlu V. David Raju B. Rama Rao K.S. Selective vapour phase dehydrogenation of biomass-derived 1,4-butanediol to gamma butyrolactone over Cu/ZrO 2 catalysts: Influence of La 2 O 3 promotor Res. Chem. Intermed. 2018 44 5817 5831 10.1007/s11164-018-3457-2 

  161. 161. Bhanushali J.T. Prasad D. Patil K.N. Reddy K.S. Rama Rao K.S. Jadhav A.H. Nagaraja B.M. Simultaneous dehydrogenation of 1,4- butanediol to γ -butyrolactone and hydrogenation of benzaldehyde to benzyl alcohol mediated over competent CeO 2 –Al 2 O 3 supported Cu as catalyst Int. J. Hydrogen Energy 2020 45 12874 12888 10.1016/j.ijhydene.2020.03.021 

  162. 162. Aellig C. Jenny F. Scholz D. Wolf P. Giovinazzo I. Kollhoff F. Hermans I. Combined 1,4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfural-derivatives under continuous flow conditions Catal. Sci. Technol. 2014 4 2326 2331 10.1039/C4CY00213J 

  163. 163. Huang L. Romero E. Ressmann A.K. Rudroff F. Hollmann F. Fraaije M.W. Kara S. Nicotinamide Adenine Dinucleotide-Dependent Redox-Neutral Convergent Cascade for Lactonizations with Type II Flavin-Containing Monooxygenase Adv. Synth. Catal. 2017 359 2142 2148 10.1002/adsc.201700401 

  164. 164. Kara S. Spickermann D. Schrittwieser J.H. Weckbecker A. Leggewie C. Arends I.W.C.E. Hollmann F. Access to Lactone Building Blocks via Horse Liver Alcohol Dehydrogenase-Catalyzed Oxidative Lactonization ACS Catal. 2013 3 2436 2439 10.1021/cs400535c 

  165. 165. Li X. Zheng J. Yang X. Dai W. Fan K. Preparation and application of highly efficient Au/SnO 2 catalyst in the oxidative lactonization of 1,4-butanediol to γ -butyrolactone Chin. J. Catal. 2013 34 1013 1019 10.1016/S1872-2067(12)60534-8 

  166. 166. Li X. Cui Y. Yang X. Dai W. Fan K. Highly efficient and stable Au/Mn 2 O 3 catalyst for oxidative cyclization of 1,4-butanediol to γ -butyrolactone Appl. Catal. A Gen. 2013 458 63 70 10.1016/j.apcata.2013.03.020 

  167. 167. Xie X. Stahl S.S. Efficient and Selective Cu/Nitroxyl-Catalyzed Methods for Aerobic Oxidative Lactonization of Diols J. Am. Chem. Soc. 2015 137 3767 3770 10.1021/jacs.5b01036 25751494 

  168. 168. Chakraborty S. Lagaditis P.O. Förster M. Bielinski E.A. Hazari N. Holthausen M.C. Jones W.D. Schneider S. Well-Defined Iron Catalysts for the Acceptorless Reversible Dehydrogenation-Hydrogenation of Alcohols and Ketones ACS Catal. 2014 4 3994 4003 10.1021/cs5009656 

  169. 169. Tang Y. Meador R.I.L. Malinchak C.T. Harrison E.E. McCaskey K.A. Hempel M.C. Funk T.W. (Cyclopentadienone)iron-Catalyzed Transfer Dehydrogenation of Symmetrical and Unsymmetrical Diols to Lactones J. Org. Chem. 2020 85 1823 1834 10.1021/acs.joc.9b01884 31880449 

  170. 170. Coleman M.G. Brown A.N. Bolton B.A. Guan H. Iron-Catalyzed Oppenauer-Type Oxidation of Alcohols Adv. Synth. Catal. 2010 352 967 970 10.1002/adsc.200900896 

  171. 171. Peña-López M. Neumann H. Beller M. Iron(II) Pincer-Catalyzed Synthesis of Lactones and Lactams through a Versatile Dehydrogenative Domino Sequence ChemCatChem 2015 7 865 871 10.1002/cctc.201402967 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로