최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Pharmaceuticals, v.14 no.3, 2021년, pp.275 -
Park, Hwangseo (Department of Bioscience and Biotechnology and Institute of Anticancer Medicine Development, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul 05006, Korea) , Jeon, Jinwon (Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea) , Kim, Kewon (chistar@kaist.ac.kr (J.J.)) , Choi, Soyeon (kkw105701@kaist.ac.kr (K.K.)) , Hong, Sungwoo (sychoi94@kaist.ac.kr (S.C.))
Background: the proviral insertion site of Moloney murine leukemia (PIM) 1 kinase has served as a therapeutic target for various human cancers due to the enhancement of cell proliferation and the inhibition of apoptosis. Methods: to identify effective PIM1 kinase inhibitors, structure-based virtual ...
2. Nawijn M.C. Alendar A. Berns A. For better or for worse: The role of PIM oncogenes in tumorigenesis Nat. Rev. Cancer 2011 11 23 34 10.1038/nrc2986 21150935
3. van Lohuizen M. Verbeek S. Krimpenfort P. Domen J. Saris C. Radaszkiewicz T. Berns A. Predisposition to lymphomagenesis in PIM-1 transgenic mice: Cooperation with C-myc and N-myc in murine leukemia virus-induced tumors Cell 1989 56 673 682 10.1016/0092-8674(89)90589-8 2537153
4. Cen B. Xiong Y. Song J.H. Mahajan S. DuPont R. McEachern K. DeAngelo D.J. Cortes J.E. Minden M.D. Ebens A. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling Mol. Cell. Biol. 2014 34 2517 2532 10.1128/MCB.00147-14 24777602
5. Chen W.W. Chan D.C. Donald C. Lilly M.B. Kraft A.S. PIM family kinases enhance tumor growth of prostate cancer cells Mol. Cancer Res. 2005 3 443 451 10.1158/1541-7786.MCR-05-0007 16123140
6. Fujii C. Nakamoto Y. Lu P. Tsuneyama K. Popivanova B.K. Kaneko S. Mukaida N. Aberrant expression of serine/threonine kinase PIM-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines Int. J. Cancer 2005 114 209 218 10.1002/ijc.20719 15540201
7. Popivanova B.K. Li Y.-Y. Zheng H. Omura K. Fujii C. Tsuneyama K. Mukaida N. Proto-oncogene, PIM-3 with serine/threonine kinase activity, is aberrantly expressed in human colon cancer cells and can prevent bad-mediated apoptosis Cancer Sci. 2007 98 321 328 10.1111/j.1349-7006.2007.00390.x 17270021
8. Zheng H.-C. Tsuneyama K. Takahashi H. Miwa S. Sugiyama T. Popivanova B.K. Fujii C. Nomoto K. Mukaida N. Takano Y. Aberrant PIM-3 expression is involved in gastric adenoma-adenocarcinoma sequence and cancer progression J. Cancer Res. Clin. Oncol. 2008 134 481 488 10.1007/s00432-007-0310-1 17876606
9. Laird P.W. van der Lugt N.M.T. Clarke A. Domen J. Linders K. McWhir J. Berns A. Hooper M. In vivo analysis of PIM-1 deficiency Nucleic Acids Res. 1993 21 4750 4755 10.1093/nar/21.20.4750 8233823
10. Xie Y. Xu K. Linn D.E. Yang X. Guo Z. Shimelis H. Nakanishi T. Ross D.D. Chen H. Fazli L. The 44-kDa PIM-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells J. Biol. Chem. 2008 283 3349 3356 10.1074/jbc.M707773200 18056989
11. Xie Y. Burcu M. Linn D.E. Qiu Y. Baer M.R. PIM-1 kinase protects p-glycoprotein from degradation and enables its glycosylation and cell surface expression Mol. Pharmacol. 2010 78 310 318 10.1124/mol.109.061713 20460432
12. Jacobs M.D. Black J. Futer O. Swenson L. Hare B. Fleming M. Saxena K. PIM-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002 J. Biol. Chem. 2005 280 13728 13734 10.1074/jbc.M413155200 15657054
13. Fedorov O. Marsden B. Pogacic V. Rellos P. Muller S. Bullock A.N. Schwaller J. Sundstrom M. Knapp S. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases Proc. Natl. Acad. Sci. USA 2007 104 20523 20528 10.1073/pnas.0708800104 18077363
14. Kutchukian P.S. Wassermann A.M. Lindvall M.K. Wright S.K. Ottl J. Jacob J. Scheufler C. Marzinzik A. Brooijmans N. Glick M. Large scale meta-analysis of fragment-based screening campaigns: Privileged fragments and complementary technologies J. Biomol. Screen. 2015 20 588 596 10.1177/1087057114565080 25550355
15. Wan X. Zhang W. Li L. Xie Y. Li W. Huang N. A new target for an old drug: Identifying mitoxantrone as a nanomolar inhibitor of PIM1 kinase via kinome-wide selectivity modeling J. Med. Chem. 2013 56 2619 2629 10.1021/jm400045y 23442188
16. Lee S.J. Han B.G. Cho J.W. Choi J.S. Lee J.K. Song H.J. Koh J.S. Lee B.I. Crystal structure of PIM1 kinase in complex with a pyrido[4,3-D]pyrimidine derivative suggests a unique binding mode PLoS ONE 2013 8 e70358 10.1371/journal.pone.0070358 23936194
17. Bogusz J. Zrubek K. Rembacz K.P. Grudnik P. Golik P. Romanowska M. Wladyka B. Dubin G. Structural analysis of PIM1 kinase complexes with ATP-competitive inhibitors Sci. Rep. 2017 7 13399 10.1038/s41598-017-13557-z 29042609
18. Bullock A.N. Debreczeni J.E. Fedorov O.Y. Nelson A. Marsden B.D. Knapp S. Structural basis of inhibitor specificity of the human protooncogene proviral insertion site in Moloney murine leukemia virus (PIM-1) kinase J. Med. Chem. 2005 48 7604 7614 10.1021/jm0504858 16302800
19. Pogacic V. Bullock A.N. Fedorov O. Filippakopoulos P. Gasser C. Biondi A. Meyer-Monard S. Knapp S. Schwaller J. Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity Cancer Res. 2007 67 6916 6924 10.1158/0008-5472.CAN-07-0320 17638903
20. Pierce A.C. Jacobs M. Stuver-Moody C. Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase J. Med. Chem. 2008 51 1972 1975 10.1021/jm701248t 18290603
21. Xia Z. Knaak C. Ma J. Beharry Z.M. McInnes C. Wang W. Kraft A.S. Smith C.D. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases J. Med. Chem. 2009 52 74 86 10.1021/jm800937p 19072652
22. Qian K. Wang L. Cywin C.L. Farmer B.T. II Hickey E. Homon C. Jakes S. Kashem M.A. Lee G. Leonard S. Hit to lead account of the discovery of a new class of inhibitors of PIM kinases and crystallographic studies revealing an unusual kinase binding mode J. Med. Chem. 2009 52 1814 1827 10.1021/jm801242y 19256503
23. Nakano H. Saito N. Parker L. Tada Y. Abe M. Tsuganezawa K. Yokoyama S. Tanaka A. Kojima H. Okabe T. Rational evolution of a novel type of potent and selective proviral integration site in Moloney murine leukemia virus kinase 1 (PIM1) inhibitor from a screening-hit compound J. Med. Chem. 2012 55 5151 5164 10.1021/jm3001289 22540945
24. Nakano H. Hasegawa T. Kojima H. Okabe T. Nagano T. Design and synthesis of potent and selective PIM kinase inhibitors by targeting unique structure of ATP-binding pocket ACS Med. Chem. Lett. 2017 8 504 509 10.1021/acsmedchemlett.6b00518 28523101
25. Burger M.T. Nishiguchi G. Han W. Lan J. Simmons R. Atallah G. Ding Y. Tamez V. Zhang Y. Mathur M. Identification of N-(4-((1R,3S,5S)-3-amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a potent and selective proviral insertion site of Moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitor in clinical trials for hematological malignancies J. Med. Chem. 2015 58 8373 8386 26505898
26. Andreoli M. Persico M. Kumar A. Orteca N. Kumar V. Pepe A. Mahalingam S. Alegria A.E. Petrella L. Sevciunaite L. Identification of the first inhibitor of the GBP1:PIM1 interaction. Implications for the development of a new class of anticancer agents against paclitaxel resistant cancer cells J. Med. Chem. 2014 57 7916 7932 10.1021/jm5009902 25211704
27. Schroeder R.L. Goyal N. Bratton M. Townley I. Pham N.A. Tram P. Stone T. Geathers J. Nguyen K. Sridhar J. Identification of quinones as novel PIM1 kinase inhibitors Bioorg. Med. Chem. Lett. 2016 26 3187 3191 10.1016/j.bmcl.2016.04.079 27173800
28. Barberis C. Moorcroft N. Arendt C. Levit M. Moreno-Mazza S. Batchelor J. Mechin I. Majid T. Discovery of N-substituted 7-azaindoles as PIM1 kinase inhibitors Bioorg. Med. Chem. Lett. 2017 27 4730 4734 10.1016/j.bmcl.2017.08.069 28947155
29. Holder S. Lilly M. Brown M.L. Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase Bioorg. Med. Chem. 2007 15 6463 6473 10.1016/j.bmc.2007.06.025 17637507
30. Cheney I.W. Yan S. Appleby T. Walker H. Vo T. Yao N. Hamatake R. Hong Z. Wu J.Z. Identification and structure—activity relationships of substituted pyridones as inhibitors of Pim-1 kinase Bioorg. Med. Chem. Lett. 2007 17 1679 1683 10.1016/j.bmcl.2006.12.086 17251021
31. Aouidate A. Ghaleb A. Ghamali M. Ousaa A. Choukrad M. Sbai A. Bouachrine M. Lakhlifi T. 3D QSAR studies, molecular docking and ADMET evaluation, using thiazolidine derivatives as template to obtain new inhibitors of PIM1 kinase Comput. Biol. Chem. 2018 74 201 211 10.1016/j.compbiolchem.2018.03.008 29635214
32. Watanabe C. Watanabe H. Fukuzawa K. Parker L.J. Okiyama Y. Yuki H. Yokoyama S. Nakano H. Tanaka S. Honma T. Theoretical analysis of activity cliffs among benzofuranone-class Pim1 inhibitors using the fragment molecular orbital method with molecular mechanics Poisson–Boltzmann surface area (FMO+MM-PBSA) approach J. Chem. Inf. Model. 2017 57 2996 3010 10.1021/acs.jcim.7b00110 29111719
33. Quinn R.J. Carroll A.R. Pham N.B. Baron P. Palframan M.E. Suraweera L. Pierens G.K. Muresan S. Developing a drug-like natural product library J. Nat. Prod. 2008 71 464 468 10.1021/np070526y 18257534
34. Yan Y. Wang W. Sun Z. Zhang J.Z.H. Ji C. Protein-ligand empirical interaction components for virtual wcreening J. Chem. Inf. Model. 2017 57 1793 1806 10.1021/acs.jcim.7b00017 28678484
35. Liu Z. Su M. Han L. Liu J. Yang Q. Li Y. Wang R. Forging the basis for developing protein–ligand interaction scoring functions Acc. Chem. Res. 2017 50 302 309 10.1021/acs.accounts.6b00491 28182403
36. Shoichet B.K. Leach A.R. Kuntz I.D. Ligand solvation in molecular docking Proteins 1999 34 4 16 10.1002/(SICI)1097-0134(19990101)34:1<4::AID-PROT2>3.0.CO;2-6 10336382
37. Park H. Jung H.-Y. Mah S. Kim K. Hong S. Kinase and GPCR polypharmacological approach for the identification of efficient anticancer medicines Org. Biomol. Chem. 2020 18 8402 8413 10.1039/D0OB01917H 33112339
38. Park H. Jung H.-Y. Kim K. Kim M. Hong S. Rational computational design of fourth-generation EGFR inhibitors to combat drug-resistant non-small cell lung cancer Int. J. Mol. Sci. 2020 21 9323 10.3390/ijms21239323
39. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv. Drug Deliv. Rev. 1997 23 3 25 10.1016/S0169-409X(96)00423-1
40. Tsuganezawa K. Watanabe H. Parker L. Yuki H. Taruya S. Nakagawa Y. Kamei D. Mori M. Ogawa N. Tomabechi Y. A novel Pim-1 kinase inhibitor targeting residues that bind the substrate peptide J. Mol. Biol. 2012 417 240 252 10.1016/j.jmb.2012.01.036 22306408
41. Schneider P. Welin M. Svensson B. Walse B. Schneider G. Virtual screening and design with machine intelligence applied to Pim-1 kinase inhibitors Mol. Inform. 2020 39 e2000109 10.1002/minf.202000109 33448694
42. Casuscelli F. Ardini E. Avanzi N. Casale E. Cervi G. D’Anello M. Donati D. Faiardi D. Ferguson R.D. Fogliatto G. Discovery and optimization of pyrrolo[1,2-a]pyrazinones leads to novel and selective inhibitors of Pim kinases Bioorg. Med. Chem. 2013 21 7364 10.1016/j.bmc.2013.09.054 24139169
43. Henley Z.A. Bax B.D. Inglesby L.M. Champigny A. Gaines S. Faulder P. Le J. Thomas D.A. Washio Y. Baldwin I.R. From PIM1 to PI3K delta via GSK3 beta: Target hopping through the kinome ACS Med. Chem. Lett. 2017 8 1093 1098 10.1021/acsmedchemlett.7b00296 29057057
44. Wang H.L. Cee V.J. Chavez F. Lanman B.A. Reed A.B. Wu B. Guerrero N. Lipford J.R. Sastri C. Winston J. The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-Pim kinase inhibitors Bioorg. Med. Chem. Lett. 2015 25 834 840 10.1016/j.bmcl.2014.12.068 25597005
45. Muley L. Baum B. Smolinski M. Freindorf M. Heine A. Klebe G. Hangauer D.G. Enhancement of hydrophobic interactions and hydrogen bond strength by cooperativity: Synthesis, modeling, and molecular dynamics simulations of a congeneric series of thrombin inhibitors J. Med. Chem. 2010 53 2126 2135 10.1021/jm9016416 20148533
46. Peng Y.-H. Ueng S.-H. Tseng C.-T. Hung M.-S. Song J.-S. Wu J.-S. Liao F.-Y. Fan Y.-S. Wu M.-H. Hsiao W.-C. Important hydrogen bond networks in indoleamine 2,3-dioxygenase 1 (IDO1) inhibitor design revealed by crystal structures of imidazoleisoindole derivatives with IDO1 J. Med. Chem. 2016 59 282 293 10.1021/acs.jmedchem.5b01390 26642377
47. Lee C.-Y. Chew E.-H. Go M.-L. Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR Eur. J. Med. Chem. 2010 45 2957 2971 10.1016/j.ejmech.2010.03.023 20392544
48. Gao X. Liu X. Lu Y. Wang Y. Cao W. Liu X. Hu H. Wang H. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation Breast Cancer 2019 26 663 671 10.1007/s12282-019-00966-3 30989585
49. Kerns E.H. Di L. Pharmaceutical profiling in drug discovery Drug Discov. Today 2003 8 316 323 10.1016/S1359-6446(03)02649-7 12654544
50. Innocenti P. Cheung K.-M.J. Solanki S. Mas-Droux C. Rowan F. Yeoh S. Boxall K. Westlake M. Pickard L. Hardy T. Design of potent and selective hybrid inhibitors of the mitotic kinase Nek2: Structure–activity relationship, structural biology, and cellular activity J. Med. Chem. 2012 55 3228 3241 10.1021/jm201683b 22404346
51. Sadowski J. Gasteiger J. Klebe G. Comparison of automatic three-dimensional model builders using 639 X-ray structures J. Chem. Inf. Model. 1994 34 1000 1008 10.1021/ci00020a039
52. Gasteiger J. Marsili M. Iterative partial equalization of orbital electronegativity a rapid access to atomic charges Tetrahedron 1980 36 3219 3228 10.1016/0040-4020(80)80168-2
53. Morris G.M. Goodsell D.S. Halliday R.S. Huey R. Hart W.E. Belew R.K. Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function J. Comput. Chem. 1998 19 1639 1662 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
54. Mehler E.L. Solmajer T. Electrostatic effects in proteins: Comparison of dielectric and charge models Protein Eng. 1991 4 903 910 10.1093/protein/4.8.903 1667878
55. Stouten P.F.W. Frömmel C. Nakamura H. Sander C. An effective solvation term based on atomic occupancies for use in protein simulations Mol. Simul. 1993 10 97 120 10.1080/08927029308022161
56. Chung K.-C. Park H. Accuracy enhancement in the estimation of molecular hydration free energies by implementing the intramolecular hydrogen bond effects J. Cheminform. 2015 7 57 10.1186/s13321-015-0106-2 26613005
57. Wang R. Gao Y. Lai L. LigBuilder: A multi-purpose program for structure-based drug design J. Mol. Model. 2000 6 498 516 10.1007/s0089400060498
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.