최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Calculus of variations and partial differential equations, v.60 no.1, 2021년, pp.15 -
Kang, Kyungkeun , Kim, Hwa Kil , Lim, Tongseok , Seo, Geuntaek
초록이 없습니다.
L Ambrosio 2008 Lectures in Mathematics ETH Zurich Gradient Flows in Metric Spaces and in the Space of Probability measures 2 Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability measures. Lectures in Mathematics ETH Zurich, 2nd edn. Birkhauser Verlag, Basel (2008)
Arch. Ration. Mech. Anal. D Balagué 209 3 1055 2013 10.1007/s00205-013-0644-6 Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal. 209(3), 1055-1088 (2013)
Phys. D D Balagué 260 5 2013 10.1016/j.physd.2012.10.002 Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Nonlocal interactions by repulsive-attractive potentials: radial ins/stability. Phys. D 260, 5-25 (2013)
Math. Anal. Numér. D Benedetto 31 5 615 1997 10.1051/m2an/1997310506151 Benedetto, D., Caglioti, E., Pulvirenti, M.: A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér. 31(5), 615-641 (1997)
Nonlinearity A Bertozzi 22 3 683 2009 10.1088/0951-7715/22/3/009 Bertozzi, A., Carrillo, J.A., Laurent, T.: Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22(3), 683-710 (2009)
Commun. Math. Phys. A Bertozzi 274 3 717 2007 10.1007/s00220-007-0288-1 Bertozzi, A., Laurent, T.: Finite-time blow-up of solutions of an aggregation equation in $$\mathbb{R}^n$$. Commun. Math. Phys. 274(3), 717-735 (2007)
Math. Models Methods Appl. Sci. A Bertozzi 22 suppl. 1 1140005 2012 10.1142/S0218202511400057 Bertozzi, A., Laurent, T., Léger, F.: Aggregation and spreading via the Newtonian potential: the dynamics of patch solutions. Math. Models Methods Appl. Sci. 22(suppl. 1), 1140005 (2012)
Commun. Pure Appl. Math. A Bertozzi 64 1 45 2011 10.1002/cpa.20334 Bertozzi, A., Laurent, T., Rosado, J.: $$L^p$$ theory for the multidimensional aggregation equation. Commun. Pure Appl. Math. 64(1), 45-83 (2011)
Duke Math. J. JA Carrillo 156 2 229 2011 10.1215/00127094-2010-211 Carrillo, J.A., DiFrancesco, M., Figalli, A., Laurent, T., Slepčev, D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156(2), 229-271 (2011)
Ann. I. H. Poincaré - AN JA Carrillo 34 1299 2017 10.1016/j.anihpc.2016.10.004 Carrillo, J.A., Figalli, A., Patacchini, F.S.: Geometry of minimizers for the interaction energy with mildly repulsive potentials. Ann. I. H. Poincaré - AN 34, 1299-1308 (2017)
Kinet. Relat. Models JA Carrillo 10 1 171 2017 10.3934/krm.2017007 Carrillo, J.A., Huang, Y.: Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinet. Relat. Models 10(1), 171-192 (2017)
Nonlinear Anal. Real World Appl. JA Carrillo 17 332 2014 10.1016/j.nonrwa.2013.12.008 Carrillo, J.A., Huang, Y., Martin, S.: Nonlinear stability of flock solutions in second-order swarming models. Nonlinear Anal. Real World Appl. 17, 332-343 (2014)
Arch. Ration. Mech. Anal. JA Carrillo 179 2 217 2006 10.1007/s00205-005-0386-1 Carrillo, J.A., McCann, R.J., Villani, C.: Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Ration. Mech. Anal. 179(2), 217-263 (2006)
Math. Models Methods Appl. Sci. K Fellner 20 12 2267 2010 10.1142/S0218202510004921 Fellner, K., Raoul, G.: Stable stationary states of non-local interaction equations. Math. Models Methods Appl. Sci. 20(12), 2267-2291 (2010)
Phys. D RC Fetecau 260 49 2013 10.1016/j.physd.2012.11.004 Fetecau, R.C., Huang, Y.: Equilibria of biological aggregations with nonlocal repulsive-attractive interactions. Phys. D 260, 49-64 (2013)
Nonlinearity RC Fetecau 24 10 2681 2011 10.1088/0951-7715/24/10/002 Fetecau, R.C., Huang, Y., Kolokolnikov, T.: Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24(10), 2681-2716 (2011)
SIAM J. Math. Anal. I Kim 44 2 568 2012 10.1137/110823584 Kim, I., Yao, Y.: The Patlak-Keller-Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44(2), 568-602 (2012)
Phys. D T Kolokolnikov 260 65 2013 10.1016/j.physd.2012.10.009 Kolokolnikov, T., Huang, Y., Pavlovski, M.: Singular patterns for an aggregation model with a confining potential. Phys. D 260, 65-76 (2013)
Phys. Rev. E Rapid Commun. T Kolokolnikov 84 015203(R) 2011 10.1103/PhysRevE.84.015203 Kolokolnikov, T., Sun, H., Uminsky, D., Bertozzi, A.: A theory of complex patterns arising from 2D particle interactions. Phys. Rev. E Rapid Commun. 84, 015203(R) (2011)
Lim, T., McCann, R.J.: Isodiametry, variance, and regular simplices from particle interactions. arXiv preprint (2019)
Adv. Math. RJ McCann 128 1 153 1997 10.1006/aima.1997.1634 McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153-179 (1997)
J. Math. Biol. A Mogilner 38 6 534 1999 10.1007/s002850050158 Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38(6), 534-570 (1999)
Bull. Math. Sci. F Santambrogio 7 1 87 2017 10.1007/s13373-017-0101-1 Santambrogio, F.: Euclidean, metric, and Wasserstein gradient flows: an overview. Bull. Math. Sci. 7(1), 87-154 (2017)
SIAM J. Appl. Math. C Topaz 65 152 2004 10.1137/S0036139903437424 Topaz, C., Bertozzi, A.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152-174 (2004)
Bull. Math. Biol. C Topaz 68 7 1601 2006 10.1007/s11538-006-9088-6 Topaz, C., Bertozzi, A., Lewis, M.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68(7), 1601-1623 (2006)
Model. Numer. Anal. G Toscani 34 6 1277 2000 10.1051/m2an:2000127 Toscani, G.: One-dimensional kinetic models of granular flows M2AN Math. Model. Numer. Anal. 34(6), 1277-1291 (2000)
Math. Models Methods Appl. Sci. J von Brecht 22 suppl. 1 1140002 2012 10.1142/S0218202511400021 von Brecht, J., Uminsky, D., Kolokolnikov, T., Bertozzi, A.: Predicting pattern formation in particle interactions. Math. Models Methods Appl. Sci. 22(suppl. 1), 1140002 (2012)
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.