$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Porosity changes due to analcime in a basaltic tuff from the Janggi Basin, Korea: experimental and geochemical modeling study of CO2-water-rock interactions

Environmental earth sciences, v.80 no.3, 2021년, pp.81 -   

Park, Jinyoung ,  Choi, Byoung-Young ,  Lee, Minhee ,  Yang, Minjune

초록이 없습니다.

참고문헌 (56)

  1. Appl Geochem BL Alemu 26 1975 2011 10.1016/j.apgeochem.2011.06.028 Alemu BL, Aagaard P, Munz IA, Skurtveit E (2011) Caprock interaction with CO2: a laboratory study of reactivity of shale with supercritical CO2 and brine. Appl Geochem 26:1975-1989. https://doi.org/10.1016/j.apgeochem.2011.06.028 

  2. Int J Greenh Gas Control ESP Aradóttir 9 24 2012 10.1016/j.ijggc.2012.02.006 Aradóttir ESP, Sonnenthal EL, Björnsson G, Jónsson H (2012) Multidimensional reactive transport modeling of CO2 mineral sequestration in basalts at the Hellisheidi geothermal field, Iceland. Int J Greenh Gas Control 9:24-40. https://doi.org/10.1016/j.ijggc.2012.02.006 

  3. Energy Convers Manag S Bachu 35 269 1994 10.1016/0196-8904(94)90060-4 Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35:269-279. https://doi.org/10.1016/0196-8904(94)90060-4 

  4. J Am Chem Soc EP Barrett 73 373 1951 10.1021/ja01145a126 Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373-380. https://doi.org/10.1021/ja01145a126 

  5. Int J Greenh Gas Control JT Birkholzer 3 745 2009 10.1016/j.ijggc.2009.07.002 Birkholzer JT, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenh Gas Control 3:745-756. https://doi.org/10.1016/j.ijggc.2009.07.002 

  6. Greenh Gas Control Technol AR Bowden 1 683 2005 10.1016/B978-008044704-9/50069-0 Bowden AR, Rigg A (2005) Assessing reservoir performance risk in CO2 storage projects. Greenh Gas Control Technol 1:683-691. https://doi.org/10.1016/B978-008044704-9/50069-0 

  7. 10.2118/139588-MS Busch A, Amann A, Bertier P, Waschbusch M, Krooss BM (2010) The significance of caprock sealing integrity for CO2 storage. In: Society of petroleum engineers-SPE international conference on CO2 capture, storage, and utilization 2010, pp 300-307 

  8. Int J Greenh Gas Control B Callow 70 146 2018 10.1016/j.ijggc.2017.12.008 Callow B, Falcon-Suarez I, Ahmed S, Matter J (2018) Assessing the carbon sequestration potential of basalt using X-ray micro-CT and rock mechanics. Int J Greenh Gas Control 70:146-156. https://doi.org/10.1016/j.ijggc.2017.12.008 

  9. Energy Procedia ER Chabora 1 2405 2009 10.1016/j.egypro.2009.01.313 Chabora ER, Benson SM (2009) Brine displacement and leakage detection using pressure measurements in aquifers overlying CO2 storage reservoirs. Energy Procedia 1:2405-2412. https://doi.org/10.1016/j.egypro.2009.01.313 

  10. Transp Porous Media M Cieszko 127 433 2019 10.1007/s11242-018-1200-5 Cieszko M, Kempiński M, Czerwiński T (2019) Limit models of pore space structure of porous materials for determination of limit pore size distributions based on mercury intrusion data. Transp Porous Media 127:433-458. https://doi.org/10.1007/s11242-018-1200-5 

  11. Int J Greenh Gas Control G Dávila 48 105 2016 10.1016/j.ijggc.2015.11.005 Dávila G, Luquot L, Soler JM, Cama J (2016) Interaction between a fractured marl caprock and CO2-rich sulfate solution under supercritical CO2 conditions. Int J Greenh Gas Control 48:105-119. https://doi.org/10.1016/j.ijggc.2015.11.005 

  12. Chem Mater ME Davis 4 756 1992 10.1021/cm00022a005 Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756-768. https://doi.org/10.1021/cm00022a005 

  13. Greenh Gases Sci Technol B Ellis 1 248 2011 10.1002/ghg.25 Ellis B, Peters C, Fitts J, Bromhal G, McIntyre D, Warzinski R, Rosenbaum E (2011) Deterioration of a fractured carbonate caprock exposed to CO2-acidified brine flow. Greenh Gases Sci Technol 1:248-260. https://doi.org/10.1002/ghg.25 

  14. Chem Geol SM Farquhar 399 98 2015 10.1016/j.chemgeo.2014.10.006 Farquhar SM, Pearce JK, Dawson GKW et al (2015) A fresh approach to investigating CO2 storage: experimental CO2-water-rock interactions in a low-salinity reservoir system. Chem Geol 399:98-122. https://doi.org/10.1016/j.chemgeo.2014.10.006 

  15. Energy Procedia M Fleury 4 5227 2011 10.1016/j.egypro.2011.02.501 Fleury M, Pironon J, Le Nindre YM, Bildstein O, Berne P, Lagneau V, Broseta D, Pichery T, Fillacier S, Lescanne M, Vidal O (2011) Evaluating sealing efficiency of caprocks for CO2 storage: an overview of the geocarbone integrity program and results. Energy Procedia 4:5227-5234. https://doi.org/10.1016/j.egypro.2011.02.501 

  16. Comput Geosci J Gao 98 9 2017 10.1016/j.cageo.2016.09.008 Gao J, Xing H, Tian Z, Pearce JK, Sedek M, Golding SD, Rudolph V (2017) Reactive transport in porous media for CO2 sequestration: pore scale modeling using the lattice Boltzmann method. Comput Geosci 98:9-20. https://doi.org/10.1016/j.cageo.2016.09.008 

  17. Int J Greenh Gas Control I Gaus 4 73 2010 10.1016/j.ijggc.2009.09.015 Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenh Gas Control 4:73-89. https://doi.org/10.1016/j.ijggc.2009.09.015 

  18. Chem Geol I Gaus 217 319 2005 10.1016/j.chemgeo.2004.12.016 Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217:319-337. https://doi.org/10.1016/j.chemgeo.2004.12.016 

  19. Chem Geol F Gherardi 244 103 2007 10.1016/j.chemgeo.2007.06.009 Gherardi F, Xu T, Pruess K (2007) Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir. Chem Geol 244:103-129. https://doi.org/10.1016/j.chemgeo.2007.06.009 

  20. Environ Sci Technol DE Giammar 48 14344 2014 10.1021/es504047t Giammar DE, Wang F, Guo B, Surface JA, Peters CA, Conradi MS, Hayes SE (2014) Impacts of diffusive transport on carbonate mineral formation from magnesium silicate-CO2-water reactions. Environ Sci Technol 48:14344-14351. https://doi.org/10.1021/es504047t 

  21. Energy Procedia SR Gislason 63 4561 2014 10.1016/j.egypro.2014.11.489 Gislason SR, Broecker WS, Gunnlaugsson E et al (2014) Rapid solubility and mineral storage of CO2 in basalt. Energy Procedia 63:4561-4574. https://doi.org/10.1016/j.egypro.2014.11.489 

  22. J Geol Soc Korea H-C Gu 53 221 2017 10.14770/jgsk.2017.53.2.221 Gu H-C, Hwang IG (2017) Depositional history of the Janggi Conglomerate controlled by tectonic subsidence, during the early stage of Janggi Basin evolution. J Geol Soc Korea 53:221-240. https://doi.org/10.14770/jgsk.2017.53.2.221 

  23. Geochim Cosmochim Acta AP Gysi 81 129 2012 10.1016/j.gca.2011.12.012 Gysi AP, Stefánsson A (2012) CO2-water-basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts. Geochim Cosmochim Acta 81:129-152. https://doi.org/10.1016/j.gca.2011.12.012 

  24. Ind Eng Chem Res RL Hartman 44 7738 2005 10.1021/ie0504349 Hartman RL, Fogler HS (2005) Reaction kinetics and mechanisms of zeolite dissolution in hydrochloric acid. Ind Eng Chem Res 44:7738-7745. https://doi.org/10.1021/ie0504349 

  25. Langmuir RL Hartman 22 11163 2006 10.1021/la061576q Hartman RL, Fogler HS (2006) The unique mechanism of analcime dissolution by hydrogen ion attack. Langmuir 22:11163-11170. https://doi.org/10.1021/la061576q 

  26. Petroleum C Hemme 3 96 2017 10.1016/j.petlm.2016.11.010 Hemme C, van Berk W (2017) Change in cap rock porosity triggered by pressure and temperature dependent CO2-water-rock interactions in CO2 storage systems. Petroleum 3:96-108. https://doi.org/10.1016/j.petlm.2016.11.010 

  27. Int J Greenh Gas Control PS Hsieh 64 137 2017 10.1016/j.ijggc.2017.07.008 Hsieh PS, Tien NC, Lin CK, Lin W, Lu HY (2017) A multi-sequestration concept of CO2 geological storage: Shale-Sandstone-Basalt system in Northwestern Taiwan. Int J Greenh Gas Control 64:137-151. https://doi.org/10.1016/j.ijggc.2017.07.008 

  28. IPCC 2005 Special Report on carbon dioxide capture and storage IPCC (2005) Special Report on carbon dioxide capture and storage. Working Group III of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge 

  29. Adv Struct Mater B Jha 2016 10.1007/978-981-10-1404-8 Jha B, Singh DN (2016) Fly ash zeolites. Adv Struct Mater. https://doi.org/10.1007/978-981-10-1404-8 

  30. J Geol Soc Korea S Jung 48 49 2012 Jung S, Kim M-C, Cho H, Son M, Sohn YK (2012) Basin fills and geological structures of the Miocene Yangpo subbasin in the Janggi-myeon, Pohang, SE Korea. J Geol Soc Korea 48:49-68 (in Korean with English abstract) 

  31. J Geophys Res Solid Earth S Kanakiya 122 4312 2017 10.1002/2017JB014019 Kanakiya S, Adam L, Esteban L, Rowe MC, Shane P (2017) Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid. J Geophys Res Solid Earth 122:4312-4327. https://doi.org/10.1002/2017JB014019 

  32. Appl Geochem JP Kaszuba 18 1065 2003 10.1016/S0883-2927(02)00239-1 Kaszuba JP, Janecky DR, Snow MG (2003) Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: implications for geologic sequestration of carbon. Appl Geochem 18:1065-1080. https://doi.org/10.1016/S0883-2927(02)00239-1 

  33. Rev Miner Geochem J Kaszuba 77 153 2013 10.2138/rmg.2013.77.5 Kaszuba J, Yardley B, Andreani M (2013) Experimental perspectives of mineral dissolution and precipitation due to carbon dioxide-water-rock interactions. Rev Miner Geochem 77:153-188. https://doi.org/10.2138/rmg.2013.77.5 

  34. J Petrol Soc Korea C Kim 16 2 73 2007 Kim C, Kim J (2007) The occurrence and formation mode of basaltic rocks in the Tertiary Janggi Basin, Janggi area. J Petrol Soc Korea 16(2):73-81 

  35. J Geol Soc Korea M-C Kim 51 253 2015 10.14770/jgsk.2015.51.3.253 Kim M-C, Gihm YS, Son E-Y, Son M, Hwang IG, Shinn YJ, Choi H (2015) Assessment of the potential for geological storage of CO2 based on its structural and sedimentologic characteristics in the Miocene Janggi Basin, SE Korea. J Geol Soc Korea 51:253-271. https://doi.org/10.14770/jgsk.2015.51.3.253 

  36. Int J Greenh Gas Control N Koukouzas 71 116 2018 10.1016/j.ijggc.2018.01.016 Koukouzas N, Kypritidou Z, Purser G, Rochelle CA, Vasilatos C, Tsoukalas N (2018) Assessment of the impact of CO2 storage in sandstone formations by experimental studies and geochemical modeling: the case of the Mesohellenic Trough, NW Greece. Int J Greenh Gas Control 71:116-132. https://doi.org/10.1016/j.ijggc.2018.01.016 

  37. AC Lasaga 1998 10.1515/9781400864874 Kinetic theory in the earth sciences. Princeton series in geochemistry Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton series in geochemistry. Princeton University Press, Princeton 

  38. Water Resour Res DR Legates 35 233 1999 10.1029/1998WR900018 Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233-241. https://doi.org/10.1029/1998WR900018 

  39. Int J Greenh Gas Control F Liu 7 153 2012 10.1016/j.ijggc.2012.01.012 Liu F, Lu P, Griffith C, Hedges SW, Soong Y, Hellevang H, Zhu C (2012) CO2-brine-caprock interaction: reactivity experiments on Eau Claire shale and a review of relevant literature. Int J Greenh Gas Control 7:153-167. https://doi.org/10.1016/j.ijggc.2012.01.012 

  40. Water Resour Res AJ Luhmann 53 1908 2017 10.1002/2016WR019216 Luhmann AJ, Tutolo BM, Bagley BC, Mildner DFR, Seyfried WE, Saar MO (2017) Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine. Water Resour Res 53:1908-1927. https://doi.org/10.1002/2016WR019216 

  41. Int J Greenh Gas Control L Luquot 48 44 2016 10.1016/j.ijggc.2015.10.023 Luquot L, Gouze P, Niemi A, Bensabat J, Carrera J (2016) CO2-rich brine percolation experiments through Heletz reservoir rock samples (Israel): role of the flow rate and brine composition. Int J Greenh Gas Control 48:44-58. https://doi.org/10.1016/j.ijggc.2015.10.023 

  42. Geochem Geophys Geosyst JM Matter 8 Q02001 2007 10.1029/2006GC001427 Matter JM, Takahashi T, Goldberg D (2007) Experimental evaluation of in situ CO2-water-rock reactions during CO2 injection in basaltic rocks: implications for geological CO2 sequestration. Geochem Geophys Geosyst 8:Q02001. https://doi.org/10.1029/2006GC001427 

  43. Science JM Matter 352 1312 2016 10.1126/science.aad8132 Matter JM, Stute M, Snæbjörnsdottir S et al (2016) Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions. Science 352:1312-1314. https://doi.org/10.1126/science.aad8132 

  44. J Geophys Res Solid Earth BP McGrail 111 B12201 2006 10.1029/2005JB004169 McGrail BP, Schaef HT, Ho AM, Chien YJ, Dooley JJ, Davidson CL (2006) Potential for carbon dioxide sequestration in flood basalts. J Geophys Res Solid Earth 111:B12201. https://doi.org/10.1029/2005JB004169 

  45. Environ Eng Sci KM Mouzakis 33 725 2016 10.1089/ees.2015.0588 Mouzakis KM, Navarre-Sitchler AK, Rother G, Bañuelos JL, Wang X, Kaszuba JP, Heath JE, Miller QRS, Alvarado V, McCray JE (2016) Experimental study of porosity changes in shale caprocks exposed to CO2-saturated brines I: evolution of mineralogy, pore connectivity, pore size distribution, and surface area. Environ Eng Sci 33:725-735. https://doi.org/10.1089/ees.2015.0588 

  46. 10.3133/ofr20041068 Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, USGS Open File Report (2004-1068) 

  47. Minerals J Park 9 515 2019 10.3390/min9090515 Park J, Yang M, Kim S, Lee M, Wang S (2019) Estimates of scCO2 storage and sealing capacity of the Janggi Basin in Korea based on laboratory scale experiments. Minerals 9:515. https://doi.org/10.3390/min9090515 

  48. Model Tech B DL Parkhurst 6 99 2013 Parkhurst DL, Appelo CAJ (2013) PHREEQC (Version 3)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Model Tech B 6:99-4259 

  49. Appl Geochem JK Pearce 75 152 2016 10.1016/j.apgeochem.2016.11.002 Pearce JK, Golab A, Dawson GKW, Knuefing L, Goodwin C, Golding SD (2016) Mineralogical controls on porosity and water chemistry during O2-SO2-CO2 reaction of CO2 storage reservoir and cap-rock core. Appl Geochem 75:152-168. https://doi.org/10.1016/j.apgeochem.2016.11.002 

  50. Sediment Geol YK Sohn 288 40 2013 10.1016/j.sedgeo.2013.01.002 Sohn YK, Ki JS, Jung S, Kim M-C, Cho H, Son M (2013) Synvolcanic and syntectonic sedimentation of the mixed volcaniclastic-epiclastic succession in the Miocene Janggi Basin, SE Korea. Sediment Geol 288:40-59. https://doi.org/10.1016/j.sedgeo.2013.01.002 

  51. Environ Sci Technol J Song 47 9 2013 10.1021/es301610p Song J, Zhang D (2013) Comprehensive review of caprock-sealing mechanisms for geologic carbon sequestration. Environ Sci Technol 47:9-22. https://doi.org/10.1021/es301610p 

  52. J Geol Soc Korea CW Song 51 53 2015 10.14770/jgsk.2015.51.1.53 Song CW, Son M, Sohn YK, Han R, Shinn YJ, Kim J-C (2015) A study on potential geologic facility sites for carbon dioxide storage in the Miocene Pohang Basin, SE Korea. J Geol Soc Korea 51:53-66. https://doi.org/10.14770/jgsk.2015.51.1.53 

  53. Appl Geochem Y Takaya 58 78 2015 10.1016/j.apgeochem.2015.03.012 Takaya Y, Nakamura K, Kato Y (2015) Dissolution of altered tuffaceous rocks under conditions relevant for CO2 storage. Appl Geochem 58:78-87. https://doi.org/10.1016/j.apgeochem.2015.03.012 

  54. J Geochem Explor JG Wang 144 154 2014 10.1016/j.gexplo.2013.12.011 Wang JG, Peng Y (2014) Numerical modeling for the combined effects of two-phase flow, deformation, gas diffusion and CO2 sorption on caprock sealing efficiency. J Geochem Explor 144:154-167. https://doi.org/10.1016/j.gexplo.2013.12.011 

  55. Comput Geosci Y Wang 125 55 2019 10.1016/j.cageo.2019.01.006 Wang Y, Zhang L, Soong Y, Dilmore R, Liu H, Lei H, Li X (2019) From core-scale experiment to reservoir-scale modeling: a scale-up approach to investigate reaction-induced permeability evolution of CO2 storage reservoir and caprock at a US CO2 storage site. Comput Geosci 125:55-68. https://doi.org/10.1016/j.cageo.2019.01.006 

  56. Environ Sci Technol Lett W Xiong 5 142 2018 10.1021/acs.estlett.8b00047 Xiong W, Wells RK, Horner JA, Schaef HT, Skemer PA, Giammar DE (2018) CO2 mineral sequestration in naturally porous basalt. Environ Sci Technol Lett 5:142-147. https://doi.org/10.1021/acs.estlett.8b00047 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로