$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Nitrene-mediated intermolecular N-N coupling for efficient synthesis of hydrazides

Nature chemistry, v.13 no.4, 2021년, pp.378 - 385  

Wang, Hao ,  Jung, Hoimin ,  Song, Fangfang ,  Zhu, Shiyang ,  Bai, Ziqian ,  Chen, Danye ,  He, Gang ,  Chang, Sukbok ,  Chen, Gong

초록이 없습니다.

참고문헌 (63)

  1. Nat. Chem. Biol. R Hili 2 284 2006 10.1038/nchembio0606-284 Hili, R. & Yudin, A. K. Making carbon-nitrogen bonds in biological and chemical synthesis. Nat. Chem. Biol. 2, 284-287 (2006). 

  2. 10.1002/9783527621262 Ricci, A. Amino Group Chemistry: from Synthesis to the Life Sciences (Wiley, 2008). 

  3. J. Nat. Prod. LM Blair 76 794 2013 10.1021/np400124n Blair, L. M. & Sperry, J. Natural products containing a nitrogen-nitrogen bond. J. Nat. Prod. 76, 794-812 (2013). 

  4. Chem. Rev. AJ Waldman 117 5784 2017 10.1021/acs.chemrev.6b00621 Waldman, A. J., Ng, T. L., Wang, P. & Balskus, E. P. Heteroatom-heteroatom bond formation in natural product biosynthesis. Chem. Rev. 117, 5784-5863 (2017). 

  5. Chem. Soc. Rev. U Ragnarsson 30 205 2001 10.1039/b010091a Ragnarsson, U. Synthetic methodology for alkyl substituted hydrazines. Chem. Soc. Rev. 30, 205-213 (2001). 

  6. Synthesis QH Guo 49 3835 2017 10.1055/s-0036-1588512 Guo, Q. H. & Lu, Z. Recent advances in nitrogen-nitrogen bond formation. Synthesis 49, 3835-3847 (2017). 

  7. Org. Lett. M Wolter 3 3803 2001 10.1021/ol0168216 Wolter, M., Klapars, A. & Buchwald, S. L. Synthesis of N-aryl hydrazides by copper-catalyzed coupling of hydrazides with aryl iodides. Org. Lett. 3, 3803-3805 (2001). 

  8. Org. Lett. DA Evans 1 595 1999 10.1021/ol990113r Evans, D. A. & Johnson, D. S. Catalytic enantioselective amination of enolsilanes using C2-symmetric copper(ii) complexes as chiral Lewis acids. Org. Lett. 1, 595-598 (1999). 

  9. Tetrahedron Lett. J Vidal 39 8845 1998 10.1016/S0040-4039(98)01983-2 Vidal, J., Hannachi, J. C., Hourdin, G., Mulatier, J. C. & Collet, A. N-Boc-3-trichloromethyloxaziridine: a new, powerful reagent for electrophilic amination. Tetrahedron Lett. 39, 8845-8848 (1998). 

  10. J. Am. Chem. Soc. BR Rosen 136 5571 2014 10.1021/ja5013323 Rosen, B. R., Werner, E. W., O’Brien, A. G. & Baran, P. S. Total synthesis of dixiamycin B by electrochemical oxidation. J. Am. Chem. Soc. 136, 5571-5574 (2014). 

  11. J. Am. Chem. Soc. MC Ryan 140 9074 2018 10.1021/jacs.8b05245 Ryan, M. C., Martinelli, J. R. & Stahl, S. S. Cu-catalyzed aerobic oxidative N-N coupling of carbazoles and diarylamines including selective cross-coupling. J. Am. Chem. Soc. 140, 9074-9077 (2018). 

  12. Chem. Sci. MC Ryan 11 1170 2020 10.1039/C9SC04305E Ryan, M. C. et al. Mechanistic insights into copper-catalyzed aerobic oxidative coupling of N-N bonds. Chem. Sci. 11, 1170-1175 (2020). 

  13. Org. Lett. BJ Stokes 12 2884 2010 10.1021/ol101040p Stokes, B. J., Vogel, C. V., Urnezis, L. K., Pan, M. & Driver, T. G. Intramolecular Fe(ii)-catalyzed N-O or N-N bond formation from aryl azides. Org. Lett. 12, 2884-2887 (2010). 

  14. Angew. Chem. Int. Ed. JJ Neumann 49 7790 2010 10.1002/anie.201002389 Neumann, J. J., Suri, M. & Glorius, F. Efficient synthesis of pyrazoles: oxidative C-C/N-N bond-formation cascade. Angew. Chem. Int. Ed. 49, 7790-7794 (2010). 

  15. Org. Lett. Y Zhang 21 4960 2019 10.1021/acs.orglett.9b01396 Zhang, Y. et al. Fe(iii)-catalyzed aerobic intramolecular N-N coupling of aliphatic azides with amines. Org. Lett. 21, 4960-4965 (2019). 

  16. Angew. Chem. Int. Ed. JB Diccianni 55 7534 2016 10.1002/anie.201602566 Diccianni, J. B., Hu, C. H. & Diao, T. N. N-N bond forming reductive elimination via a mixed-valent nickel(ii)-nickel(iii) intermediate. Angew. Chem. Int. Ed. 55, 7534-7538 (2016). 

  17. J. Am. Chem. Soc. L Maestre 139 2216 2017 10.1021/jacs.6b08219 Maestre, L. et al. Functional-group-tolerant, silver-catalyzed N-N bond formation by nitrene transfer to amines. J. Am. Chem. Soc. 139, 2216-2223 (2017). 

  18. Nat. Chem. J Li 5 634 2013 10.1038/nchem.1685 Li, J. et al. Erratum: Simultaneous structure-activity studies and arming of natural products by C-H amination reveal cellular targets of eupalmerin acetate. Nat. Chem. 5, 634-634 (2013). 

  19. Chem. Eur. J. M Kono 25 3119 2019 10.1002/chem.201805878 Kono, M., Harada, S. & Nemoto, T. Chemoselective intramolecular formal insertion reaction of Rh-nitrenes into an amide bond over C-H insertion. Chem. Eur. J. 25, 3119-3124 (2019). 

  20. 10.1002/9783527342822.ch8 Dehghany, M., Eshon, J., Roberts, J. M. & Schomaker, J. M. in Silver Catalysis in Organic Synthesis (eds Li, C. J. & Bi, X. H.) Ch. 8, 439-532 (Wiley, 2019). 

  21. J. Am. Chem. Soc. K Lang 141 12388 2019 10.1021/jacs.9b05850 Lang, K., Torker, S., Wojtas, L. & Zhang, X. P. Asymmetric induction and enantiodivergence in catalytic radical C-H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitution. J. Am. Chem. Soc. 141, 12388-12396 (2019). 

  22. Nat. Catal. M Ju 2 899 2019 10.1038/s41929-019-0339-y Ju, M. et al. Tunable catalyst-controlled syntheses of β- and γ-amino alcohols enabled by silver-catalysed nitrene transfer. Nat. Catal. 2, 899-908 (2019). 

  23. Nature HML Davies 451 417 2008 10.1038/nature06485 Davies, H. M. L. & Manning, J. R. Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417-424 (2008). 

  24. J. Am. Chem. Soc. Y Park 138 14020 2016 10.1021/jacs.6b08211 Park, Y., Heo, J., Baik, M.-H. & Chang, S. Why is the Ir(iii)-mediated amido transfer much faster than the Rh(iii)-mediated reaction? A combined experimental and computational study. J. Am. Chem. Soc. 138, 14020-14029 (2016). 

  25. Chem. Rev. Y Park 117 9247 2017 10.1021/acs.chemrev.6b00644 Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C-H amination: scope, mechanism and applications. Chem. Rev. 117, 9247-9301 (2017). 

  26. Science SY Hong 359 1016 2018 10.1126/science.aap7503 Hong, S. Y. et al. Selective formation of γ-lactams via C-H amidation enabled by tailored iridium catalysts. Science 359, 1016-1021 (2018). 

  27. J. Am. Chem. Soc. Y Park 137 4534 2015 10.1021/jacs.5b01324 Park, Y., Park, K. T., Kim, J. G. & Chang, S. Mechanistic studies on the Rh(iii)-mediated amido transfer process leading to robust C-H amination with a new type of amidating reagent. J. Am. Chem. Soc. 137, 4534-4542 (2015). 

  28. Angew. Chem. Int. Ed. G Dequirez 51 7384 2012 10.1002/anie.201201945 Dequirez, G., Pons, V. & Dauban, P. Nitrene chemistry in organic synthesis: still in its infancy? Angew. Chem. Int. Ed. 51, 7384-7395 (2012). 

  29. Chem. Eur. J. T Shimbayashi 25 3156 2019 10.1002/chem.201803716 Shimbayashi, T., Sasakura, K., Eguchi, A., Okamoto, K. & Ohe, K. Recent progress on cyclic nitrenoid precursors in transition-metal-catalyzed nitrene-transfer reactions. Chem. Eur. J. 25, 3156-3180 (2019). 

  30. ACS Catal. KM van Vliet 10 4751 2020 10.1021/acscatal.0c00961 van Vliet, K. M. & de Bruin, B. Dioxazolones: stable substrates for the catalytic transfer of acyl nitrenes. ACS Catal. 10, 4751-4769 (2020). 

  31. Tetrahedron Lett. J Sauer 9 319 1968 10.1016/S0040-4039(01)98753-2 Sauer, J. & Mayer, K. K. Thermolyse und photolyse von 3-subtituierten Δ2-1.4.2-dioxazolinonen-(5), Δ2-1.4.2-dioxazolin-thionen-(5) und 4-substituierten Δ3-1.2.5.3-thiadioxazolin-s-oxiden. Tetrahedron Lett. 9, 319-324 (1968). 

  32. Angew. Chem. Int. Ed. V Bizet 53 5639 2014 10.1002/anie.201310790 Bizet, V., Buglioni, L. & Bolm, C. Light-induced ruthenium-catalyzed nitrene transfer reactions: a photochemical approach towards N-acyl sulfimides and sulfoximines. Angew. Chem. Int. Ed. 53, 5639-5642 (2014). 

  33. Angew. Chem. Int. Ed. H Lebel 53 7300 2014 10.1002/anie.201402961 Lebel, H., Piras, H. & Bartholomeus, J. Rhodium-catalyzed stereoselective amination of thioethers with N-mesyloxycarbamates: DMAP and bis(DMAP)CH2Cl2 as key additives. Angew. Chem. Int. Ed. 53, 7300-7304 (2014). 

  34. J. Am. Chem. Soc. KM van Vliet 141 15240 2019 10.1021/jacs.9b07140 van Vliet, K. M. et al. Efficient copper-catalyzed multicomponent synthesis of N-acyl amidines via acyl nitrenes. J. Am. Chem. Soc. 141, 15240-15249 (2019). 

  35. Nat. Catal. Y Park 2 219 2019 10.1038/s41929-019-0230-x Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C-H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2, 219-227 (2019). 

  36. J. Am. Chem. Soc. H Wang 141 7194 2019 10.1021/jacs.9b02811 Wang, H. et al. Iridium-catalyzed enantioselective C(sp3)-H amidation controlled by attractive noncovalent interactions. J. Am. Chem. Soc. 141, 7194-7201 (2019). 

  37. J. Am. Chem. Soc. Q Xing 141 3849 2019 10.1021/jacs.9b00535 Xing, Q., Chan, C. M., Yeung, Y. W. & Yu, W. Y. Ruthenium(ii)-catalyzed enantioselective γ-lactams formation by intramolecular C-H amidation of 1,4,2-dioxazol-5-ones. J. Am. Chem. Soc. 141, 3849-3853 (2019). 

  38. Acc. Chem. Res. JL Roizen 45 911 2012 10.1021/ar200318q Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C-H bonds. Acc. Chem. Res. 45, 911-922 (2012). 

  39. Angew. Chem. Int. Ed. H Wang 54 13049 2015 10.1002/anie.201506323 Wang, H., Tang, G. & Li, X. Rhodium(iii)-catalyzed amidation of unactivated C(sp3)-H bonds. Angew. Chem. Int. Ed. 54, 13049-13052 (2015). 

  40. ACS Catal. R Mei 6 793 2016 10.1021/acscatal.5b02661 Mei, R., Loup, J. & Ackermann, L. Oxazolinyl-assisted C-H amidation by cobalt(iii) catalysis. ACS Catal. 6, 793-797 (2016). 

  41. J. Am. Chem. Soc. H Lei 141 2268 2019 10.1021/jacs.9b00237 Lei, H. & Rovis, T. Ir-catalyzed intermolecular branch-selective allylic C-H amidation of unactivated terminal olefins. J. Am. Chem. Soc. 141, 2268-2273 (2019). 

  42. Angew. Chem. Int. Ed. T Knecht 58 7117 2019 10.1002/anie.201901733 Knecht, T., Mondal, S., Ye, J. H., Das, M. & Glorius, F. Intermolecular, branch-selective, and redox-neutral Cp*Ir(iii)-catalyzed allylic C-H amidation. Angew. Chem. Int. Ed. 58, 7117-7121 (2019). 

  43. Angew. Chem. Int. Ed. RJ Scamp 59 890 2020 10.1002/anie.201911886 Scamp, R. J., deRamon, E., Paulson, E. K., Miller, S. J. & Ellman, J. A. Co(iii)-catalyzed C-H amidation of dehydroalanine for the site-selective structural diversification of thiostrepton. Angew. Chem. Int. Ed. 59, 890-895 (2020). 

  44. J. Am. Chem. Soc. Z Zhou 141 19048 2019 10.1021/jacs.9b09301 Zhou, Z. et al. Non-C2-symmetric chiral-at-ruthenium catalyst for highly efficient enantioselective intramolecular C(sp3)-H amidation. J. Am. Chem. Soc. 141, 19048-19057 (2019). 

  45. ACS Catal. JS Burman 9 5474 2019 10.1021/acscatal.9b01338 Burman, J. S., Harris, R. J., B. Farr, C. M., Bacsa, J. & Blakey, S. B. Rh(iii) and Ir(iii)Cp* complexes provide complementary regioselectivity profiles in intermolecular allylic C-H amidation reactions. ACS Catal. 9, 5474-5479 (2019). 

  46. Angew. Chem. Int. Ed. PW Tan 56 16550 2017 10.1002/anie.201709273 Tan, P. W., Mak, A. M., Sullivan, M. B., Dixon, D. J. & Seayad, J. Thioamide-directed cobalt(iii)-catalyzed selective amidation of C(sp3)−H bonds. Angew. Chem. Int. Ed. 56, 16550-16554 (2017). 

  47. Angew. Chem. Int. Ed. S Fukagawa 58 18154 2019 10.1002/anie.201911268 Fukagawa, S., Kojima, M., Yoshino, T. & Matsunaga, S. Catalytic enantioselective methylene C(sp3)-H amidation of 8-alkylquinolines using a Cp*Rhiii/chiral carboxylic acid system. Angew. Chem. Int. Ed. 58, 18154-18158 (2019). 

  48. Org. Lett. P Dube 11 5622 2009 10.1021/ol9023387 Dube, P. et al. Carbonyldiimidazole-mediated Lossen rearrangement. Org. Lett. 11, 5622-5625 (2009). 

  49. Angew. Chem. Int. Ed. L Legnani 55 2248 2016 10.1002/anie.201507630 Legnani, L. & Morandi, B. Direct catalytic synthesis of unprotected 2-amino-1-phenylethanols from alkenes by using iron(ii) phthalocyanine. Angew. Chem. Int. Ed. 55, 2248-2251 (2016). 

  50. J. Am. Chem. Soc. G-S Liu 135 3343 2013 10.1021/ja311923z Liu, G.-S., Zhang, Y.-Q., Yuan, Y.-A. & Xu, H. Iron(ii)-catalyzed intramolecular aminohydroxylation of olefins with functionalized hydroxylamines. J. Am. Chem. Soc. 135, 3343-3346 (2013). 

  51. Org. Lett. Y-Q Zhang 15 3910 2013 10.1021/ol401666e Zhang, Y.-Q., Yuan, Y.-A., Liu, G.-S. & Xu, H. Iron(ii)-catalyzed asymmetric intramolecular aminohydroxylation of indoles. Org. Lett. 15, 3910-3913 (2013). 

  52. Org. Lett. Y Zhang 21 4960 2019 10.1021/acs.orglett.9b01396 Zhang, Y. et al. Fe(iii)-catalyzed aerobic intramolecular N−N coupling of aliphatic azides with amines. Org. Lett. 21, 4960-4965 (2019). 

  53. Angew. Chem. Int. Ed. H Yu 57 12053 2018 10.1002/anie.201804284 Yu, H., Li, Z. & Bolm, C. Three-dimensional heterocycles by iron-catalyzed ring-closing sulfoxide imidation. Angew. Chem. Int. Ed. 57, 12053-12056 (2018). 

  54. Org. Biomol. Chem. J Yao 12 5469 2014 10.1039/c4ob00921e Yao, J., Feng, R., Lin, C., Liu, Z. & Zhang, Y. Synthesis of 2,3-dihydro-1H-indazoles by Rh(iii)-catalyzed C-H cleavage of arylhydrazines. Org. Biomol. Chem. 12, 5469-5476 (2014). 

  55. Org. Lett. S Han 16 2494 2014 10.1021/ol500865j Han, S. et al. Rh(iii)-catalyzed oxidative coupling of 1,2-disubstituted arylhydrazines and olefins: a new strategy for 2,3-dihydro-1H-indazoles. Org. Lett. 16, 2494-2497 (2014). 

  56. Angew. Chem. Int. Ed. F Zhan 52 1266 2013 10.1002/anie.201207173 Zhan, F. & Liang, G. Formation of enehydrazine intermediates through coupling of phenylhydrazines with vinyl halides: entry into the Fischer indole synthesis. Angew. Chem. Int. Ed. 52, 1266-1269 (2013). 

  57. Angew. Chem. Int. Ed. FW Patureau 50 1977 2011 10.1002/anie.201007241 Patureau, F. W. & Glorius, F. Oxidizing directing groups enable efficient and innovative C-H activation reactions. Angew. Chem. Int. Ed. 50, 1977-1979 (2011). 

  58. J. Comput. Chem. T Lu 33 580 2012 10.1002/jcc.22885 Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580-592 (2012). 

  59. J. Am. Chem. Soc. SM Rummelt 137 5506 2015 10.1021/jacs.5b01475 Rummelt, S. M., Radkowski, K., Rosca, D. A. & Furstner, A. Interligand interactions dictate the regioselectivity of trans-hydrometalations and related reactions catalyzed by [Cp*RuCl]. hydrogen bonding to a chloride ligand as a steering principle in catalysis. J. Am. Chem. Soc. 137, 5506-5519 (2015). 

  60. Chem. Eur. J. PF Kuijpers 23 13819 2017 10.1002/chem.201702537 Kuijpers, P. F., van der Vlugt, J. I., Schneider, S. & de Bruin, B. Nitrene radical intermediates in catalytic synthesis. Chem. Eur. J. 23, 13819-13829 (2017). 

  61. Science ET Hennessy 340 591 2013 10.1126/science.1233701 Hennessy, E. T. & Betley, T. A. Complex N-heterocycle synthesis via iron-catalyzed, direct C-H bond amination. Science 340, 591-595 (2013). 

  62. Angew. Chem. Int. Ed. K-P Shing 57 11947 2018 10.1002/anie.201806059 Shing, K.-P. et al. N-heterocyclic carbene iron(iii) porphyrin-catalyzed intramolecular C(sp3)-H amination of alkyl azides. Angew. Chem. Int. Ed. 57, 11947-11951 (2018). 

  63. Chin. J. Chem. P Wang 36 1222 2018 10.1002/cjoc.201800427 Wang, P. & Deng, L. Recent advances in iron-catalyzed C-H bond amination via iron imido intermediate. Chin. J. Chem. 36, 1222-1240 (2018). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로