$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders 원문보기

Experimental & molecular medicine : EMM, v.53 no.3, 2021년, pp.328 - 338  

Song, You-Hyang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea) ,  Yoon, Jiwon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea) ,  Lee, Seung-Hee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Somatostatin (SST) is a well-known neuropeptide that is expressed throughout the brain. In the cortex, SST is expressed in a subset of GABAergic neurons and is known as a protein marker of inhibitory interneurons. Recent studies have identified the key functions of SST in modulating cortical circuit...

참고문헌 (99)

  1. 1. Isaacson JS Scanziani M How inhibition shapes cortical activity Neuron 2011 72 231 243 22017986 

  2. 2. Okun M Lampl I Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities Nat. Neurosci. 2008 11 535 537 18376400 

  3. 3. Petilla Interneuron Nomenclature G Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex Nat. Rev. Neurosci. 2008 9 557 568 18568015 

  4. 4. Fishell G Rudy B Mechanisms of inhibition within the telencephalon: “where the wild things are” Annu Rev. Neurosci. 2011 34 535 567 21469958 

  5. 5. London M Hausser M Dendritic computation Annu. Rev. Neurosci. 2005 28 503 532 16033324 

  6. 6. Wall NR Brain-wide maps of synaptic input to cortical interneurons J. Neurosci. 2016 36 4000 4009 27053207 

  7. 7. Kvitsiani D Distinct behavioural and network correlates of two interneuron types in prefrontal cortex Nature 2013 498 363 366 23708967 

  8. 8. Ji XY Thalamocortical innervation pattern in mouse auditory and visual cortex: laminar and cell-type specificity Cereb. Cortex 2016 26 2612 2625 25979090 

  9. 9. Riedemann, T. Diversity and function of somatostatin-expressing interneurons in the cerebral cortex. Int. J. Mol. Sci. 10.3390/ijms20122952 (2019). 

  10. 10. Riedemann T Straub T Sutor B Two types of somatostatin-expressing GABAergic interneurons in the superficial layers of the mouse cingulate cortex PLoS ONE 2018 13 e0200567 30001424 

  11. 11. Wang Y Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat J. Physiol. 2004 561 65 90 15331670 

  12. 12. Silberberg G Markram H Disynaptic inhibition between neocortical pyramidal cells mediated by Martinotti cells Neuron 2007 53 735 746 17329212 

  13. 13. Adesnik H Bruns W Taniguchi H Huang ZJ Scanziani M A neural circuit for spatial summation in visual cortex Nature 2012 490 226 231 23060193 

  14. 14. Zhang S Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing Science 2014 345 660 665 25104383 

  15. 15. Li LY Differential receptive field properties of parvalbumin and somatostatin inhibitory neurons in mouse auditory cortex Cereb. Cortex 2015 25 1782 1791 24425250 

  16. 16. Xu H Jeong HY Tremblay R Rudy B Neocortical somatostatin-expressing GABAergic interneurons disinhibit the thalamorecipient layer 4 Neuron 2013 77 155 167 23312523 

  17. 17. Funk CM Role of somatostatin-positive cortical interneurons in the generation of sleep slow waves J. Neurosci. 2017 37 9132 9148 28821651 

  18. 18. Kato HK Gillet SN Isaacson JS Flexible sensory representations in auditory cortex driven by behavioral relevance Neuron 2015 88 1027 1039 26586181 

  19. 19. Adler A Zhao R Shin ME Yasuda R Gan WB Somatostatin-expressing interneurons enable and maintain learning-dependent sequential activation of pyramidal neurons Neuron 2019 102 202 216 e207 30792151 

  20. 20. Kim D Distinct roles of parvalbumin- and somatostatin-expressing interneurons in working memory Neuron 2016 92 902 915 27746132 

  21. 21. Kamigaki T Dan Y Delay activity of specific prefrontal interneuron subtypes modulates memory-guided behavior Nat. Neurosci. 2017 20 854 863 28436982 

  22. 22. Francis BH Baskin DG Saunders DR Ensinck JW Distribution of somatostatin-14 and somatostatin-28 gastrointestinal-pancreatic cells of rats and humans Gastroenterology 1990 99 1283 1291 1976560 

  23. 23. Abdel-Rahman O Lamarca A Valle JW Hubner RA Somatostatin receptor expression in hepatocellular carcinoma: prognostic and therapeutic considerations Endocr. Relat. Cancer 2014 21 R485 R493 25336571 

  24. 24. Patel YC Somatostatin and its receptor family Front. Neuroendocrinol. 1999 20 157 198 10433861 

  25. 25. Weiss RE Reddi AH Nimni ME Somatostatin can locally inhibit proliferation and differentiation of cartilage and bone precursor cells Calcif. Tissue Int. 1981 33 425 430 6117356 

  26. 26. Lepousez G Mouret A Loudes C Epelbaum J Viollet C Somatostatin contributes to in vivo gamma oscillation modulation and odor discrimination in the olfactory bulb J. Neurosci. 2010 30 870 875 20089895 

  27. 27. Song YH Somatostatin enhances visual processing and perception by suppressing excitatory inputs to parvalbumin-positive interneurons in V1 Sci. Adv. 2020 6 eaaz0517 32494634 

  28. 28. Tasic B Shared and distinct transcriptomic cell types across neocortical areas Nature 2018 563 72 78 30382198 

  29. 29. Miyoshi G Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons J. Neurosci. 2010 30 1582 1594 20130169 

  30. 30. Tapia-Arancibia L Pares-Herbute N Astier H Calcium dependence of somatostatin (SRIF) release and cyclic AMP levels in cultured diencephalic neurons Neuroendocrinology 1989 49 555 560 2566943 

  31. 31. Gamse R Release of immunoreactive somatostatin from hypothalamic cells in culture: inhibition by gamma-aminobutyric acid Proc. Natl Acad. Sci. USA 1980 77 5552 5556 6107913 

  32. 32. Tapia-Arancibia L Astier H Actions of excitatory amino acids on somatostatin release from cortical neurons in primary cultures J. Neurochem. 1989 53 1134 1141 2570126 

  33. 33. Fontana G De Bernardi R Ferro F Gemignani A Raiteri M Characterization of the glutamate receptors mediating release of somatostatin from cultured hippocampal neurons J. Neurochem. 1996 66 161 168 8522949 

  34. 34. Rage F Rougeot C Tapia-Arancibia L GABAA and NMDA receptor activation controls somatostatin messenger RNA expression in primary cultures of hypothalamic neurons Neuroendocrinology 1994 60 470 476 7845537 

  35. 35. Cattaneo, S. et al. Somatostatin-expressing interneurons co-release GABA and glutamate onto different postsynaptic targets in the striatum. Preprint at https://www.biorxiv.org/content/10.1101/566984v1 (2019). 

  36. 36. Liguz-Lecznar M Urban-Ciecko J Kossut M Somatostatin and somatostatin-containing neurons in shaping neuronal activity and plasticity Front. Neural Circuits 2016 10 48 27445703 

  37. 37. Baraban SC Tallent MK Interneuron diversity series: interneuronal neuropeptides–endogenous regulators of neuronal excitability Trends Neurosci. 2004 27 135 142 15036878 

  38. 38. Bonanno G Carita F Cavazzani P Munari C Raiteri M Selective block of rat and human neocortex GABA(B) receptors regulating somatostatin release by a GABA(B) antagonist endowed with cognition enhancing activity Neuropharmacology 1999 38 1789 1795 10587094 

  39. 39. Davies P Katzman R Terry RD Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer disease and Alzheimer senile dementa Nature 1980 288 279 280 6107862 

  40. 40. Ramos B Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1 x APP transgenic model of Alzheimer’s disease Neurobiol. Aging 2006 27 1658 1672 16271420 

  41. 41. Terry RD Katzman R Senile dementia of the Alzheimer type Ann. Neurol. 1983 14 497 506 6139975 

  42. 42. Kumar U Expression of somatostatin receptor subtypes (SSTR1-5) in Alzheimer’s disease brain: an immunohistochemical analysis Neuroscience 2005 134 525 538 15961235 

  43. 43. Ramos B Early neuropathology of somatostatin/NPY GABAergic cells in the hippocampus of a PS1xAPP transgenic model of Alzheimer’s disease Neurobiol. Aging 2006 27 1658 1672 16271420 

  44. 44. Fearnley JM Lees AJ Ageing and Parkinson’s disease: substantia nigra regional selectivity Brain 1991 114 Pt 5 2283 2301 1933245 

  45. 45. Wakabayashi K The Lewy body in Parkinson’s disease and related neurodegenerative disorders Mol. Neurobiol. 2013 47 495 508 22622968 

  46. 46. Braak H Braak E Pathoanatomy of Parkinson’s disease J. Neurol. 2000 247 II3 II10 10991663 

  47. 47. Epelbaum J Somatostatin and dementia in Parkinson’s disease Brain Res. 1983 278 376 379 6139152 

  48. 48. Iwasawa C Reduced expression of somatostatin in GABAergic interneurons derived from induced pluripotent stem cells of patients with parkin mutations Mol. Brain 2019 12 5 30658665 

  49. 49. McGregor MM Nelson AB Circuit mechanisms of Parkinson’s disease Neuron 2019 101 1042 1056 30897356 

  50. 50. Bates GP Huntington disease Nat. Rev. Dis. Prim. 2015 1 15005 27188817 

  51. 51. Waldvogel HJ Kim EH Tippett LJ Vonsattel JP Faull RL The neuropathology of Huntington’s disease Curr. Top. Behav. Neurosci. 2015 22 33 80 25300927 

  52. 52. Bolam JP Hanley JJ Booth PA Bevan MD Synaptic organisation of the basal ganglia J. Anat. 2000 196 Pt 4 527 542 10923985 

  53. 53. Holley SM Galvan L Kamdjou T Cepeda C Levine MS Striatal GABAergic interneuron dysfunction in the Q175 mouse model of Huntington’s disease Eur. J. Neurosci. 2019 49 79 93 30472747 

  54. 54. Holley, S. M. et al. Enhanced GABAergic inputs contribute to functional alterations of cholinergic interneurons in the R6/2 mouse model of Huntington’s disease. eNeuro 10.1523/ENEURO.0008-14.2015 (2015). 

  55. 55. Rajput PS Somatostatin receptor 1 and 5 double knockout mice mimic neurochemical changes of Huntington’s disease transgenic mice PLoS ONE 2011 6 e24467 21912697 

  56. 56. Kremer HP Roos RA Dingjan G Marani E Bots GT Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease J. Neuropathol. Exp. Neurol. 1990 49 371 382 2141871 

  57. 57. Murrough JW Iacoviello B Neumeister A Charney DS Iosifescu DV Cognitive dysfunction in depression: neurocircuitry and new therapeutic strategies Neurobiol. Learn Mem. 2011 96 553 563 21704176 

  58. 58. Disner SG Beevers CG Haigh EA Beck AT Neural mechanisms of the cognitive model of depression Nat. Rev. Neurosci. 2011 12 467 477 21731066 

  59. 59. Rubinow DR Gold PW Post RM Ballenger JC CSF somatostatin in affective illness and normal volunteers Prog. Neuropsychopharmacol. Biol. Psychiatry 1985 9 393 400 2866561 

  60. 60. Holsboer F The corticosteroid receptor hypothesis of depression Neuropsychopharmacology 2000 23 477 501 11027914 

  61. 61. Seney ML Tripp A McCune S Lewis DA Sibille E Laminar and cellular analyses of reduced somatostatin gene expression in the subgenual anterior cingulate cortex in major depression Neurobiol. Dis. 2015 73 213 219 25315685 

  62. 62. Guilloux JP Molecular evidence for BDNF- and GABA-related dysfunctions in the amygdala of female subjects with major depression Mol. Psychiatry 2012 17 1130 1142 21912391 

  63. 63. Tripp A Kota RS Lewis DA Sibille E Reduced somatostatin in subgenual anterior cingulate cortex in major depression Neurobiol. Dis. 2011 42 116 124 21232602 

  64. 64. Seney ML The role of genetic sex in affect regulation and expression of GABA-related genes across species Front. Psychiatry 2013 4 104 24062698 

  65. 65. Leucht S Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis Lancet 2013 382 951 962 23810019 

  66. 66. Lodge DJ Grace AA Hippocampal dysregulation of dopamine system function and the pathophysiology of schizophrenia Trends Pharm. Sci. 2011 32 507 513 21700346 

  67. 67. Konradi C Hippocampal interneurons are abnormal in schizophrenia Schizophr. Res. 2011 131 165 173 21745723 

  68. 68. Reinikainen KJ Koponen H Jolkkonen J Riekkinen PJ Decreased somatostatin-like immunoreactivity in the cerebrospinal fluid of chronic schizophrenic patients with cognitive impairment Psychiatry Res. 1990 33 307 312 2243905 

  69. 69. Hoftman GD Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance Schizophr. Bull. 2015 41 180 191 24361861 

  70. 70. Bristow GC 16p11 duplication disrupts hippocampal-orbitofrontal-amygdala connectivity, revealing a neural circuit endophenotype for schizophrenia Cell Rep. 2020 31 107536 32320645 

  71. 71. Vécsei L Bollók I Telegdy G Intracerebroventricular somatostatin attenuates electroconvulsive shock-induced amnesia in rats Peptides 1983 4 293 295 6138755 

  72. 72. Craft S Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose Arch. Gen. Psychiatry 1999 56 1135 1140 10591291 

  73. 73. Iwata N Takaki Y Fukami S Tsubuki S Saido TC Region-specific reduction of a beta-degrading endopeptidase, neprilysin, in mouse hippocampus upon aging J. Neurosci. Res 2002 70 493 500 12391610 

  74. 74. Leissring MA Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death Neuron 2003 40 1087 1093 14687544 

  75. 75. Iwata N Presynaptic localization of neprilysin contributes to efficient clearance of amyloid-beta peptide in mouse brain J. Neurosci. 2004 24 991 998 14749444 

  76. 76. Saito T Somatostatin regulates brain amyloid beta peptide Abeta42 through modulation of proteolytic degradation Nat. Med. 2005 11 434 439 15778722 

  77. 77. Savonenko A Episodic-like memory deficits in the APPswe/PS1dE9 mouse model of Alzheimer’s disease: relationships to beta-amyloid deposition and neurotransmitter abnormalities Neurobiol. Dis. 2005 18 602 617 15755686 

  78. 78. Drechsel DN Hyman AA Cobb MH Kirschner MW Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau Mol. Biol. Cell 1992 3 1141 1154 1421571 

  79. 79. Busciglio J Lorenzo A Yeh J Yankner BA β-Amyloid fibrils induce tau phosphorylation and loss of microtubule binding Neuron 1995 14 879 888 7718249 

  80. 80. Hanger DP Anderton BH Noble W Tau phosphorylation: the therapeutic challenge for neurodegenerative disease Trends Mol. Med. 2009 15 112 119 19246243 

  81. 81. Wang JZ Grundke-Iqbal I Iqbal K Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration Eur. J. Neurosci. 2007 25 59 68 17241267 

  82. 82. de Lecea L Cortistatin—functions in the central nervous system Mol. Cell Endocrinol. 2008 286 88 95 18374474 

  83. 83. Sanchez-Alavez M Cortistatin modulates memory processes in rats Brain Res. 2000 858 78 83 10700600 

  84. 84. Yang LP Keating GM Octreotide long-acting release (LAR): a review of its use in the management of acromegaly Drugs 2010 70 1745 1769 20731479 

  85. 85. Hu M Tomlinson B Pharmacokinetic evaluation of lanreotide Expert Opin. Drug Metab. Toxicol. 2010 6 1301 1312 20716034 

  86. 86. Bruns C Lewis I Briner U Meno-Tetang G Weckbecker G SOM230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile Eur. J. Endocrinol. 2002 146 707 716 11980628 

  87. 87. Chalabi M Somatostatin analogs: does pharmacology impact antitumor efficacy? Trends Endocrinol. Metab. 2014 25 115 127 24405892 

  88. 88. Melmed S New therapeutic agents for acromegaly Nat. Rev. Endocrinol. 2016 12 90 98 26610414 

  89. 89. Wildemberg LE Gadelha MR Pasireotide for the treatment of acromegaly Expert Opin. Pharmacother. 2016 17 579 588 26808354 

  90. 90. Drewe J Fricker G Vonderscher J Beglinger C Enteral absorption of octreotide: absorption enhancement by polyoxyethylene-24-cholesterol ether Br. J. Pharm. 1993 108 298 303 

  91. 91. Fricker G Phospholipids and lipid-based formulations in oral drug delivery Pharm. Res. 2010 27 1469 1486 20411409 

  92. 92. Banks WA Kastin AJ Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability Brain Res. Bull. 1985 15 287 292 2413968 

  93. 93. Banks WA Permeability of the murine blood-brain barrier to some octapeptide analogs of somatostatin Proc. Natl Acad. Sci. USA 1990 87 6762 6766 1975697 

  94. 94. Wong HL Wu XY Bendayan R Nanotechnological advances for the delivery of CNS therapeutics Adv. Drug Deliv. Rev. 2012 64 686 700 22100125 

  95. 95. Spindler KR Hsu T-H Viral disruption of the blood–brain barrier Trends Microbiol. 2012 20 282 290 22564250 

  96. 96. Alexander A Recent expansions of novel strategies towards the drug targeting into the brain Int. J. Nanomed. 2019 14 5895 

  97. 97. Kaur IP Bhandari R Bhandari S Kakkar V Potential of solid lipid nanoparticles in brain targeting J. Control Release 2008 127 97 109 18313785 

  98. 98. Pahuja R Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats ACS Nano 2015 9 4850 4871 25825926 

  99. 99. Zeng H Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures Cell 2012 149 483 496 22500809 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로